forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbipointnet_cls.py
182 lines (148 loc) · 5.84 KB
/
bipointnet_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from basic import BiLinear
from torch.autograd import Variable
offset_map = {1024: -3.2041, 2048: -3.4025, 4096: -3.5836}
class Conv1d(nn.Module):
def __init__(self, inplane, outplane, Linear):
super().__init__()
self.lin = Linear(inplane, outplane)
def forward(self, x):
B, C, N = x.shape
x = x.permute(0, 2, 1).contiguous().view(-1, C)
x = self.lin(x).view(B, N, -1).permute(0, 2, 1).contiguous()
return x
class EmaMaxPool(nn.Module):
def __init__(self, kernel_size, affine=True, Linear=BiLinear, use_bn=True):
super(EmaMaxPool, self).__init__()
self.kernel_size = kernel_size
self.bn3 = nn.BatchNorm1d(1024, affine=affine)
self.use_bn = use_bn
def forward(self, x):
batchsize, D, N = x.size()
if self.use_bn:
x = torch.max(x, 2, keepdim=True)[0] + offset_map[N]
else:
x = torch.max(x, 2, keepdim=True)[0] - 0.3
return x
class BiPointNetCls(nn.Module):
def __init__(
self,
output_classes,
input_dims=3,
conv1_dim=64,
use_transform=True,
Linear=BiLinear,
):
super(BiPointNetCls, self).__init__()
self.input_dims = input_dims
self.conv1 = nn.ModuleList()
self.conv1.append(Conv1d(input_dims, conv1_dim, Linear=Linear))
self.conv1.append(Conv1d(conv1_dim, conv1_dim, Linear=Linear))
self.conv1.append(Conv1d(conv1_dim, conv1_dim, Linear=Linear))
self.bn1 = nn.ModuleList()
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.bn1.append(nn.BatchNorm1d(conv1_dim))
self.conv2 = nn.ModuleList()
self.conv2.append(Conv1d(conv1_dim, conv1_dim * 2, Linear=Linear))
self.conv2.append(Conv1d(conv1_dim * 2, conv1_dim * 16, Linear=Linear))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(conv1_dim * 2))
self.bn2.append(nn.BatchNorm1d(conv1_dim * 16))
self.maxpool = EmaMaxPool(conv1_dim * 16, Linear=Linear, use_bn=True)
self.pool_feat_len = conv1_dim * 16
self.mlp3 = nn.ModuleList()
self.mlp3.append(Linear(conv1_dim * 16, conv1_dim * 8))
self.mlp3.append(Linear(conv1_dim * 8, conv1_dim * 4))
self.bn3 = nn.ModuleList()
self.bn3.append(nn.BatchNorm1d(conv1_dim * 8))
self.bn3.append(nn.BatchNorm1d(conv1_dim * 4))
self.dropout = nn.Dropout(0.3)
self.mlp_out = Linear(conv1_dim * 4, output_classes)
self.use_transform = use_transform
if use_transform:
self.transform1 = TransformNet(input_dims)
self.trans_bn1 = nn.BatchNorm1d(input_dims)
self.transform2 = TransformNet(conv1_dim)
self.trans_bn2 = nn.BatchNorm1d(conv1_dim)
def forward(self, x):
batch_size = x.shape[0]
h = x.permute(0, 2, 1)
if self.use_transform:
trans = self.transform1(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn1(h))
for conv, bn in zip(self.conv1, self.bn1):
h = conv(h)
h = bn(h)
h = F.relu(h)
if self.use_transform:
trans = self.transform2(h)
h = h.transpose(2, 1)
h = torch.bmm(h, trans)
h = h.transpose(2, 1)
h = F.relu(self.trans_bn2(h))
for conv, bn in zip(self.conv2, self.bn2):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = self.maxpool(h).view(-1, self.pool_feat_len)
for mlp, bn in zip(self.mlp3, self.bn3):
h = mlp(h)
h = bn(h)
h = F.relu(h)
h = self.dropout(h)
out = self.mlp_out(h)
return out
class TransformNet(nn.Module):
def __init__(self, input_dims=3, conv1_dim=64, Linear=BiLinear):
super(TransformNet, self).__init__()
self.conv = nn.ModuleList()
self.conv.append(Conv1d(input_dims, conv1_dim, Linear=Linear))
self.conv.append(Conv1d(conv1_dim, conv1_dim * 2, Linear=Linear))
self.conv.append(Conv1d(conv1_dim * 2, conv1_dim * 16, Linear=Linear))
self.bn = nn.ModuleList()
self.bn.append(nn.BatchNorm1d(conv1_dim))
self.bn.append(nn.BatchNorm1d(conv1_dim * 2))
self.bn.append(nn.BatchNorm1d(conv1_dim * 16))
# self.maxpool = nn.MaxPool1d(conv1_dim * 16)
self.maxpool = EmaMaxPool(conv1_dim * 16, Linear=Linear, use_bn=True)
self.pool_feat_len = conv1_dim * 16
self.mlp2 = nn.ModuleList()
self.mlp2.append(Linear(conv1_dim * 16, conv1_dim * 8))
self.mlp2.append(Linear(conv1_dim * 8, conv1_dim * 4))
self.bn2 = nn.ModuleList()
self.bn2.append(nn.BatchNorm1d(conv1_dim * 8))
self.bn2.append(nn.BatchNorm1d(conv1_dim * 4))
self.input_dims = input_dims
self.mlp_out = Linear(conv1_dim * 4, input_dims * input_dims)
def forward(self, h):
batch_size = h.shape[0]
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = self.maxpool(h).view(-1, self.pool_feat_len)
for mlp, bn in zip(self.mlp2, self.bn2):
h = mlp(h)
h = bn(h)
h = F.relu(h)
out = self.mlp_out(h)
iden = Variable(
torch.from_numpy(
np.eye(self.input_dims).flatten().astype(np.float32)
)
)
iden = iden.view(1, self.input_dims * self.input_dims).repeat(
batch_size, 1
)
if out.is_cuda:
iden = iden.cuda()
out = out + iden
out = out.view(-1, self.input_dims, self.input_dims)
return out