forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
186 lines (152 loc) · 6.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""
Utility functions for link prediction
Most code is adapted from authors' implementation of RGCN link prediction:
https://github.com/MichSchli/RelationPrediction
"""
import dgl
import numpy as np
import tensorflow as tf
#######################################################################
#
# Utility function for building training and testing graphs
#
#######################################################################
def get_adj_and_degrees(num_nodes, triplets):
"""Get adjacency list and degrees of the graph"""
adj_list = [[] for _ in range(num_nodes)]
for i, triplet in enumerate(triplets):
adj_list[triplet[0]].append([i, triplet[2]])
adj_list[triplet[2]].append([i, triplet[0]])
degrees = np.array([len(a) for a in adj_list])
adj_list = [np.array(a) for a in adj_list]
return adj_list, degrees
def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size):
"""Sample edges by neighborhool expansion.
This guarantees that the sampled edges form a connected graph, which
may help deeper GNNs that require information from more than one hop.
"""
edges = np.zeros((sample_size), dtype=np.int32)
# initialize
sample_counts = np.array([d for d in degrees])
picked = np.array([False for _ in range(n_triplets)])
seen = np.array([False for _ in degrees])
for i in range(0, sample_size):
weights = sample_counts * seen
if np.sum(weights) == 0:
weights = np.ones_like(weights)
weights[np.where(sample_counts == 0)] = 0
probabilities = (weights) / np.sum(weights)
chosen_vertex = np.random.choice(
np.arange(degrees.shape[0]), p=probabilities
)
chosen_adj_list = adj_list[chosen_vertex]
seen[chosen_vertex] = True
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
while picked[edge_number]:
chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0]))
chosen_edge = chosen_adj_list[chosen_edge]
edge_number = chosen_edge[0]
edges[i] = edge_number
other_vertex = chosen_edge[1]
picked[edge_number] = True
sample_counts[chosen_vertex] -= 1
sample_counts[other_vertex] -= 1
seen[other_vertex] = True
return edges
def sample_edge_uniform(adj_list, degrees, n_triplets, sample_size):
"""Sample edges uniformly from all the edges."""
all_edges = np.arange(n_triplets)
return np.random.choice(all_edges, sample_size, replace=False)
def generate_sampled_graph_and_labels(
triplets,
sample_size,
split_size,
num_rels,
adj_list,
degrees,
negative_rate,
sampler="uniform",
):
"""Get training graph and signals
First perform edge neighborhood sampling on graph, then perform negative
sampling to generate negative samples
"""
# perform edge neighbor sampling
if sampler == "uniform":
edges = sample_edge_uniform(
adj_list, degrees, len(triplets), sample_size
)
elif sampler == "neighbor":
edges = sample_edge_neighborhood(
adj_list, degrees, len(triplets), sample_size
)
else:
raise ValueError("Sampler type must be either 'uniform' or 'neighbor'.")
# relabel nodes to have consecutive node ids
edges = triplets[edges]
src, rel, dst = edges.transpose()
uniq_v, edges = np.unique((src, dst), return_inverse=True)
src, dst = np.reshape(edges, (2, -1))
relabeled_edges = np.stack((src, rel, dst)).transpose()
# negative sampling
samples, labels = negative_sampling(
relabeled_edges, len(uniq_v), negative_rate
)
# further split graph, only half of the edges will be used as graph
# structure, while the rest half is used as unseen positive samples
split_size = int(sample_size * split_size)
graph_split_ids = np.random.choice(
np.arange(sample_size), size=split_size, replace=False
)
src = src[graph_split_ids]
dst = dst[graph_split_ids]
rel = rel[graph_split_ids]
# build DGL graph
print("# sampled nodes: {}".format(len(uniq_v)))
print("# sampled edges: {}".format(len(src) * 2))
g, rel, norm = build_graph_from_triplets(
len(uniq_v), num_rels, (src, rel, dst)
)
return g, uniq_v, rel, norm, samples, labels
def comp_deg_norm(g):
g = g.local_var()
in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy()
norm = 1.0 / in_deg
norm[np.isinf(norm)] = 0
return norm
def build_graph_from_triplets(num_nodes, num_rels, triplets):
"""Create a DGL graph. The graph is bidirectional because RGCN authors
use reversed relations.
This function also generates edge type and normalization factor
(reciprocal of node incoming degree)
"""
g = dgl.DGLGraph()
g.add_nodes(num_nodes)
src, rel, dst = triplets
src, dst = np.concatenate((src, dst)), np.concatenate((dst, src))
rel = np.concatenate((rel, rel + num_rels))
edges = sorted(zip(dst, src, rel))
dst, src, rel = np.array(edges).transpose()
g.add_edges(src, dst)
norm = comp_deg_norm(g)
print("# nodes: {}, # edges: {}".format(num_nodes, len(src)))
return g, rel, norm
def build_test_graph(num_nodes, num_rels, edges):
src, rel, dst = edges.transpose()
print("Test graph:")
return build_graph_from_triplets(num_nodes, num_rels, (src, rel, dst))
def negative_sampling(pos_samples, num_entity, negative_rate):
size_of_batch = len(pos_samples)
num_to_generate = size_of_batch * negative_rate
neg_samples = np.tile(pos_samples, (negative_rate, 1))
labels = np.zeros(size_of_batch * (negative_rate + 1), dtype=np.float32)
labels[:size_of_batch] = 1
values = np.random.randint(num_entity, size=num_to_generate)
choices = np.random.uniform(size=num_to_generate)
subj = choices > 0.5
obj = choices <= 0.5
neg_samples[subj, 0] = values[subj]
neg_samples[obj, 2] = values[obj]
return np.concatenate((pos_samples, neg_samples)), labels