-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathcore_warp.py
158 lines (139 loc) · 5.11 KB
/
core_warp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import math
import typing
import core
import cv2
import torch
from torch.nn import functional as F
def contribution_2d(x: torch.Tensor, kernel: str='cubic') -> torch.Tensor:
'''
Args:
x (torch.Tensor): (2, k, N), where x[0] is the x-coordinate.
kernel (str):
Return
torch.Tensor: (k^2, N)
'''
if kernel == 'nearest':
weight = core.nearest_contribution(x)
elif kernel == 'bilinear':
weight = core.linear_contribution(x)
elif kernel == 'bicubic':
weight = core.cubic_contribution(x)
weight_x = weight[0].unsqueeze(0)
weight_y = weight[1].unsqueeze(1)
weight = weight_x * weight_y
weight = weight.view(-1, weight.size(-1))
weight = weight / weight.sum(0, keepdim=True)
return weight
def warp_by_size(
x: torch.Tensor,
m: torch.Tensor,
sizes: typing.Tuple[int, int],
kernel: str='bicubic',
padding_type: str='reflect',
fill_value: int=0) -> torch.Tensor:
kernels = {'nearest': 1, 'bilinear': 2, 'bicubic': 4}
if kernel in kernels:
k = kernels[kernel]
pad = k // 2
else:
raise ValueError('kernel: {} is not supported!'.format(kernel))
dkwargs = {'device': x.device, 'requires_grad': False}
# Construct the target coordinates
# The target coordinates do not require gradients
pos = torch.arange(sizes[0] * sizes[1], **dkwargs)
pos_i = (pos // sizes[1]).float()
pos_j = (pos % sizes[1]).float()
# Map the target coordinates to the source coordinates
# This implements the backward warping
pos_tar = torch.stack([pos_j, pos_i, torch.ones_like(pos_i)], dim=0)
pos_src = torch.matmul(m.inverse(), pos_tar)
pos_src = pos_src[:2] / pos_src[-1, :]
# Out of the image
pos_bound = pos_src.new_tensor([x.size(-1), x.size(-2)]) - 0.5
pos_bound.unsqueeze_(-1)
pos_in = torch.logical_and(pos_src.ge(-0.5), pos_src.lt(pos_bound))
pos_in = pos_in.all(0)
# Remove the outside region and compensate subpixel shift
sub = (k % 2) / 2
pos_src = pos_src[..., pos_in]
pos_src_sub = pos_src - sub
pos_discrete = pos_src_sub.ceil().long()
pos_frac = pos_src_sub - pos_src.floor()
pos_frac.unsqueeze_(1)
# (2, 1, HW)
pos_w = torch.linspace(pad - k + 1, pad, k, **dkwargs)
pos_w = pos_w.view(1, -1, 1).repeat(2, 1, 1)
pos_w = pos_frac - pos_w
weight = contribution_2d(pos_w, kernel=kernel)
weight.unsqueeze_(0)
# Calculate the exact sampling point
idx = pos_discrete[0] + (x.size(-1) + 1 - k % 2) * pos_discrete[1]
# (B, k^2, HW)
x = core.padding(x, -2, pad, pad, padding_type=padding_type)
x = core.padding(x, -1, pad, pad, padding_type=padding_type)
x = F.unfold(x, (k, k))
sample = x[..., idx]
y = sample * weight
y = y.sum(dim=1)
out = y.new_full((y.size(0), pos_in.size(0)), fill_value)
out.masked_scatter_(pos_in, y)
out = out.view(-1, 1, *sizes)
return out
def warp(
x: torch.Tensor,
m: torch.Tensor,
sizes: typing.Union[typing.Tuple[int, int], str, None]=None,
kernel: str='bicubic',
padding_type: str='reflect',
fill_value: int=0) -> torch.Tensor:
x, b, c, h, w = core.reshape_input(x)
x, dtype = core.cast_input(x)
m = m.to(x.device)
if sizes is None:
sizes = (h, w)
elif isinstance(sizes, str) and sizes == 'auto':
with torch.no_grad():
corners = m.new_tensor([
[-0.5, -0.5, w - 0.5, w - 0.5],
[-0.5, h - 0.5, -0.5, h - 0.5],
[1, 1, 1, 1],
])
corners = torch.matmul(m, corners)
corners = corners / corners[-1, :]
y_min = corners[1].min() + 0.5
x_min = corners[0].min() + 0.5
h_new = math.floor(corners[1].max() - y_min + 0.5)
w_new = math.floor(corners[0].max() - x_min + 0.5)
m_comp = m.new_tensor([[1, 0, -x_min], [0, 1, -y_min], [0, 0, 1]])
m = torch.matmul(m_comp, m)
sizes = (h_new, w_new)
elif not isinstance(sizes, tuple):
raise ValueError('sizes:', sizes, 'is not supported!')
x = warp_by_size(
x,
m,
sizes,
kernel=kernel,
padding_type=padding_type,
fill_value=fill_value,
)
x = core.reshape_output(x, b, c)
x = core.cast_output(x, dtype)
return x
if __name__ == '__main__':
import os
import utils
torch.set_printoptions(precision=4, sci_mode=False, edgeitems=16, linewidth=200)
#x = torch.arange(64).float().view(1, 1, 8, 8)
x = torch.arange(16).float().view(1, 1, 4, 4)
#x = utils.get_img('example/butterfly.png')
#x.requires_grad = True
#m = torch.Tensor([[3.2, 0.016, -68], [1.23, 1.7, -54], [0.008, 0.0001, 1]])
#m = torch.Tensor([[2.33e-01, 3.97e-3, 3], [-4.49e-1, 2.49e-1, 1.15e2], [-2.95e-3, 1.55e-5, 1]])
m = torch.Tensor([[2, 0, 0], [0, 2, 0], [0, 0, 1]])
y = warp(x, m, sizes='auto', kernel='bicubic', fill_value=-1)
z = core.imresize(x, scale=2, kernel='cubic')
print(y)
print(z)
#os.makedirs('dummy', exist_ok=True)
#utils.save_img(y, 'dummy/warp.png')