-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_finetune.py
214 lines (162 loc) · 7.07 KB
/
eval_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import argparse
import os
import numpy as np
import torch
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import classification_report
from sklearn.metrics import roc_auc_score
import torch.nn as nn
import CXR_dataset
from torch.utils.data import DataLoader, SequentialSampler
import utils
from vision_transformer import DINOHead, CLS_head
from torchvision import models as torchvision_models
import vision_transformer as vit_o
from main_run import get_args_parser
parser = argparse.ArgumentParser('DINO', parents=[get_args_parser()])
args = parser.parse_args()
logger = logging.getLogger(__name__)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def save_model(args, iteration, model, optimizer, scheduler, best_auc):
model_to_save = model.module if hasattr(model, 'module') else model
model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.bin" % args.name)
torch.save({'iteration': iteration, 'model_state_dict': model_to_save.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_auc': best_auc}, model_checkpoint)
logger.info("Saved model checkpoint to [DIR: %s]", args.output_dir)
def save_model_latest(args, iteration, model, optimizer, scheduler, best_auc):
model_to_save = model.module if hasattr(model, 'module') else model
model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint_latest.bin" % args.name)
torch.save({'iteration': iteration, 'model_state_dict': model_to_save.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'best_auc': best_auc}, model_checkpoint)
logger.info("Saved latest model checkpoint to [DIR: %s]", args.output_dir)
def count_parameters(model):
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params/1000000
def valid(args, model, writer, test_loader):
# Validation!
eval_losses = AverageMeter()
logger.info("***** Running Validation *****")
logger.info(" Num steps = %d", len(test_loader))
logger.info(" Batch size = %d", 1)
model.eval()
pred, true = [], []
y_score_1 = []
epoch_iterator = tqdm(test_loader,
desc="Validating... (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
loss_fct = nn.BCEWithLogitsLoss()
for step, batch in enumerate(epoch_iterator):
x, y = batch
x = x.to(args.device)
y = y.to(args.device).float()
with torch.no_grad():
output = model(x)
labels = y
loss = loss_fct(output.view(-1), labels.view(-1))
eval_losses.update(loss.item())
output = torch.sigmoid(output + 0.0)
prob_np = output.detach().cpu().numpy()
preds = np.round(prob_np)
for x in range(len(labels)):
true.append(np.asarray(labels.cpu())[x])
for x in range(len(labels)):
pred.append(np.asarray(preds)[x])
# Calculate score for AUC
for x in range(len(labels)):
y_sc = prob_np[x]
y_score_1.append(y_sc)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
y_score = np.array(y_score_1)
auc = roc_auc_score(true, y_score)
logger.info("\n")
logger.info("External validation Results")
logger.info("Valid Loss: %2.5f" % eval_losses.avg)
logger.info("External validation AUC (TB): %2.5f" % auc)
logger.info(
classification_report(y_true=true, y_pred=pred, target_names=['Normal', 'Tuberculosis'],
digits=4, labels=list(range(2))))
writer.add_scalar("test/loss", scalar_value=eval_losses.avg)
return eval_losses.avg, auc
def evaluate(args, model):
""" Train the model """
if args.local_rank in [-1, 0]:
os.makedirs(args.output_dir, exist_ok=True)
writer = SummaryWriter(log_dir=os.path.join("logs", args.name))
# Prepare dataset
testset = CXR_dataset.CXR_Dataset(args.data_path, transforms=None, mode='test', labeled=True)
test_sampler = SequentialSampler(testset)
test_loader = DataLoader(testset,
sampler=test_sampler,
batch_size=1,
num_workers=8,
pin_memory=True) if testset is not None else None
# Load weights
state_dict = torch.load(args.pretrained_dir, map_location="cpu")
args.checkpoint_key = 'student'
print("Take key {} in provided checkpoint dict".format(args.checkpoint_key))
state_dict = state_dict[args.checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
msg_s = model.load_state_dict(state_dict, strict=False)
print('Weights found at {} and loaded with msg: {}'.format('CheXpert and pre-training', msg_s))
loss, auc = valid(args, model, writer, test_loader)
logger.info("Best AUC: \t%f" % auc)
logger.info("End Validation!")
def main():
# Setup CUDA, GPU & distributed training
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
# Define model and load weights
if 'vit' in args.arch:
model = vit_o.__dict__[args.arch](patch_size=args.patch_size)
embed_dim = model.embed_dim
inter_dim = 384
elif args.arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[args.arch]()
if 'resne' in args.arch:
embed_dim = model.fc.weight.shape[1]
inter_dim = 2048
elif 'densenet' in args.arch:
embed_dim = model.classifier.weight.shape[1]
inter_dim = 1920
elif 'eff' in args.arch:
embed_dim = model.classifier[1].weight.shape[1]
inter_dim = 1792
model = utils.MultiCropWrapper(
model,
DINOHead(embed_dim, args.out_dim, args.use_bn_in_head), CLS_head(inter_dim, 256, 1), args)
model = model.cuda()
# Training
evaluate(args, model)
if __name__ == "__main__":
main()