-
Notifications
You must be signed in to change notification settings - Fork 12
/
blas_calls.h
393 lines (365 loc) · 15.3 KB
/
blas_calls.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
Developed by Sandeep Sharma and Garnet K.-L. Chan, 2012
Copyright (c) 2012, Garnet K.-L. Chan
This program is integrated in Molpro with the permission of
Sandeep Sharma and Garnet K.-L. Chan
*/
#ifndef BLAS_CALLS_HEADER
#define BLAS_CALLS_HEADER
// This may look like C code, but it is really -*- C++ -*-
//AIK, 1998
//This file contains C-wrapped BLAS/Lapack functions calls. No changes in
//function cals were done: user has to care himself to match C and Fortran
//conventions.
//For crossplatforming out if_def's HERE, in this file only.
//Currently sintaxis of Fortran calls corresponds to AIX/IBM compilers.
//Linking blas/lapack libraries: IBM: blas and /usr/local/lib/lapack.a
// DEC: dxml
// SGI: sgimath
#ifndef _FORTINT_64
#define FORTINT int
#else
#define FORTINT long
#endif
#ifdef _HAS_INTEL_MKL
#ifdef _FORTINT_64
#define MKL_INT long
#endif
#include "mkl.h"
//#include "mkl_blacs.h"
#ifdef AIX
extern "C"
{
void daxpy(int *ntot, double *coeff, double *copy_from, int *inc1,
double *copy_to, int *inc2);
void dcopy(int *ntot,double *copy_from,int *inc1, double *copy_to,int *inc2);
double ddot(int *ntot, double *x, int *incx, double *y, int *incy);
void dgemm(char *transa, char *transb, int *m, int *n, int *k, double *alpha,
double *A, int *lda, double *B, int *ldb, double *beta, double *C,
int *ldc);
void dgemv(char *trans, int *m, int *n, double *alpha,
double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy);
void dscal(int *size,double *coeff,double *matrix,int *inc);
void saxpy(int *ntot, float *coeff, float *copy_from, int *inc1,
float *copy_to, int *inc2);
void scopy(int *ntot, float *copy_from, int *inc1, float *copy_to, int *inc2);
float sdot(int *ntot, float *x, int *incx, float *y, int *incy);
void sgemm(char *transa, char *transb, int *m, int *n, int *k, float *alpha,
float *A, int *lda, float *B, int *ldb, float *beta, float *C,
int *ldc);
void sscal(int *size, float *coeff, float *matrix,int *inc);
}
#else //SGI, Linux
extern "C"
{
void daxpy_(FORTINT *ntot, double *coeff, double *copy_from, FORTINT *inc1,
double *copy_to, FORTINT *inc2);
void dcopy_(FORTINT *ntot,double *copy_from,FORTINT *inc1, double *copy_to,FORTINT *inc2);
double ddot_(FORTINT *ntot, double *x, FORTINT *incx, double *y, FORTINT *incy);
void dgemm_(char *transa, char *transb, FORTINT *m, FORTINT *n, FORTINT *k, double *alpha,
double *A, FORTINT *lda, double *B, FORTINT *ldb, double *beta, double *C,
FORTINT *ldc);
void dgemv_(char *trans, FORTINT *m, FORTINT *n, double *alpha,
double *a, FORTINT *lda, double *x, FORTINT *incx, double *beta, double *y, FORTINT *incy);
void dscal_(FORTINT *size, double *coeff, double *matrix,FORTINT *inc);
void saxpy_(FORTINT *ntot, float *coeff, float *copy_from, FORTINT *inc1,
float *copy_to, FORTINT *inc2);
void scopy_(FORTINT *ntot, float *copy_from, FORTINT *inc1, float *copy_to, FORTINT *inc2);
float sdot_(FORTINT *ntot, float *x, FORTINT *incx, float *y, FORTINT *incy);
void sgemm_(char *transa, char *transb, FORTINT *m, FORTINT *n, FORTINT *k, float *alpha,
float *A, FORTINT *lda, float *B, FORTINT *ldb, float *beta, float *C,
FORTINT *ldc);
void sscal_(FORTINT *size, float *coeff, float *matrix,FORTINT *inc);
int idamax_(FORTINT &n, double* d, FORTINT &indx);
//int idamax_(int &n, double* d, int &indx);
}
#endif
#else
#ifdef AIX
extern "C"
{
void dgesvd(char* JOBU, char* JOBVT, int* M, int* N, double* A, int* LDA, double* S, double* U, int* LDU, double* VT, int* LDVT, double* WORK, int* LWORK,
int* INFO);
void daxpy(int *ntot, double *coeff, double *copy_from, int *inc1,
double *copy_to, int *inc2);
void dcopy(int *ntot,double *copy_from,int *inc1, double *copy_to,int *inc2);
double ddot(int *ntot, double *x, int *incx, double *y, int *incy);
void dgemm(char *transa, char *transb, int *m, int *n, int *k, double *alpha,
double *A, int *lda, double *B, int *ldb, double *beta, double *C,
int *ldc);
void dgemv(char *trans, int *m, int *n, double *alpha,
double *a, int *lda, double *x, int *incx, double *beta, double *y, int *incy);
void dscal(int *size,double *coeff,double *matrix,int *inc);
void saxpy(int *ntot, float *coeff, float *copy_from, int *inc1,
float *copy_to, int *inc2);
void scopy(int *ntot, float *copy_from, int *inc1, float *copy_to, int *inc2);
float sdot(int *ntot, float *x, int *incx, float *y, int *incy);
void sgemm(char *transa, char *transb, int *m, int *n, int *k, float *alpha,
float *A, int *lda, float *B, int *ldb, float *beta, float *C,
int *ldc);
void sscal(int *size, float *coeff, float *matrix,int *inc);
void dstev(char* JOBZ,FORTINT* N,double* A,double* E, double* W, FORTINT* Wlen, double*WORK, FORTINT* INFO);
void dsyev(char* JOBZ,char* UPLO,int* N,double* A,int* LDA,double* W,double*WORK,int*LWORK,int* INFO);
void dgesv(int *n, int *nrhs, double *a, int *lda, int *ipiv, double *b, int *ldb, int *info);
}
#else //SGI, Linux
extern "C"
{
void dgesvd_(char* JOBU, char* JOBVT, FORTINT* M, FORTINT* N, double* A, FORTINT* LDA, double* S, double* U, FORTINT* LDU, double* VT, FORTINT* LDVT, double* WORK, FORTINT* LWORK,
FORTINT* INFO);
void daxpy_(FORTINT *ntot, double *coeff, double *copy_from, FORTINT *inc1,
double *copy_to, FORTINT *inc2);
void dcopy_(FORTINT *ntot,double *copy_from,FORTINT *inc1, double *copy_to,FORTINT *inc2);
double ddot_(FORTINT *ntot, double *x, FORTINT *incx, double *y, FORTINT *incy);
void dgemm_(char *transa, char *transb, FORTINT *m, FORTINT *n, FORTINT *k, double *alpha,
double *A, FORTINT *lda, double *B, FORTINT *ldb, double *beta, double *C,
FORTINT *ldc);
void dgemv_(char *trans, FORTINT *m, FORTINT *n, double *alpha,
double *a, FORTINT *lda, double *x, FORTINT *incx, double *beta, double *y, FORTINT *incy);
void dscal_(FORTINT *size, double *coeff, double *matrix,FORTINT *inc);
void saxpy_(FORTINT *ntot, float *coeff, float *copy_from, FORTINT *inc1,
float *copy_to, FORTINT *inc2);
void scopy_(FORTINT *ntot, float *copy_from, FORTINT *inc1, float *copy_to, FORTINT *inc2);
float sdot_(FORTINT *ntot, float *x, FORTINT *incx, float *y, FORTINT *incy);
void sgemm_(char *transa, char *transb, FORTINT *m, FORTINT *n, FORTINT *k, float *alpha,
float *A, FORTINT *lda, float *B, FORTINT *ldb, float *beta, float *C,
FORTINT *ldc);
void sscal_(FORTINT *size, float *coeff, float *matrix,FORTINT *inc);
void dstev_(char* JOBZ,FORTINT* N,double* A,double* E, double* W, FORTINT* Wlen, double*WORK, FORTINT* INFO);
void dsyev_(char* JOBZ,char* UPLO,FORTINT* N,double* A,FORTINT* LDA,double* W,double*WORK,FORTINT*LWORK,FORTINT* INFO);
void dgesv_(FORTINT *n, FORTINT *nrhs, double *a, FORTINT *lda, FORTINT *ipiv, double *b, FORTINT *ldb, FORTINT *info);
int idamax_(FORTINT &n, double* d, FORTINT &indx);
//int idamax_(int &n, double* d, int &indx);
}
#endif
#endif
/*
**
** void DAXPY(int ntot, double coeff, double *copy_from, int inc1,
** double *copy_to, int inc2);
** This function adds data from copy_from to copy_to
**
** int ntot: length of data
** int inc1,inc2: increments for copy_from, copy_to
*/
inline void DAXPY(FORTINT ntot, double coeff, double *copy_from, FORTINT inc1,
double *copy_to, FORTINT inc2)
{
#ifdef AIX
daxpy(&ntot,&coeff,copy_from,&inc1,copy_to,&inc2);
#else
daxpy_(&ntot,&coeff,copy_from,&inc1,copy_to,&inc2);
#endif
}
inline void SAXPY(FORTINT ntot, float coeff, float *copy_from, FORTINT inc1,
float *copy_to, FORTINT inc2)
{
#ifdef AIX
saxpy(&ntot,&coeff,copy_from,&inc1,copy_to,&inc2);
#else
saxpy_(&ntot,&coeff,copy_from,&inc1,copy_to,&inc2);
#endif
}
/*
**
** void DCOPY(int ntot, double *x, int incx, double *y, int *incy);
** This function copies x to y
**
** int ntot: length of x,y
** int incx,incy: increments for x,y
*/
inline void DCOPY(FORTINT ntot,double *copy_from,FORTINT inc1,double *copy_to,FORTINT inc2)
{
#ifdef AIX
dcopy(&ntot,copy_from,&inc1,copy_to,&inc2);
#else
dcopy_(&ntot,copy_from,&inc1,copy_to,&inc2);
#endif
}
inline void SCOPY(FORTINT ntot,float *copy_from,FORTINT inc1,float *copy_to,FORTINT inc2)
{
#ifdef AIX
scopy(&ntot,copy_from,&inc1,copy_to,&inc2);
#else
scopy_(&ntot,copy_from,&inc1,copy_to,&inc2);
#endif
}
/*
**
** void DDOT(int ntot, double *x, int incx, double *y, int *incy);
**
** This function calculates dot product (x,y)
**
** int ntot: length of x,y
** int incx,incy: increments for x,y
*/
inline double DDOT(FORTINT ntot, double *x, FORTINT incx, double *y, FORTINT incy)
{
#ifdef AIX
return ddot(&ntot,x,&incx,y,&incy);
#else
return ddot_(&ntot,x,&incx,y,&incy);
#endif
}
inline float SDOT(FORTINT ntot, float *x, FORTINT incx, float *y, FORTINT incy)
{
#ifdef AIX
return sdot(&ntot,x,&incx,y,&incy);
#else
return sdot_(&ntot,x,&incx,y,&incy);
#endif
}
/*
**
** void DGEMM(char transa, char transb, int m, int n, int k, double alpha,
** double *A, int lda, double *B, int ldb, double beta, double *C,
** int ldc);
** This function calculates C(m,n)=alpha*(opT)A(m,k)*(opT)B(k,n)+ beta*C(m,n)
**
** char transa: On entry, specifies the form of (op)A used in the
** matrix multiplication:
** If transa = 'N' or 'n', (op)A = A
** If transa = 'T' or 't', (op)A = transp(A)
** If transa = 'R' or 'r', (op)A = conjugate(A)
** If transa = 'C' or 'c', (op)A = conjug_transp(A)
** On exit, transa is unchanged.
** char transb: On entry, specifies the form of (op)B used in the
** matrix multiplication:
** If transb = 'N' or 'n', (op)B = B
** If transb = 'T' or 't', (op)B = transp(B)
** If transb = 'R' or 'r', (op)B = conjugate(B)
** int m: On entry, the number of rows of the matrix (op)A and of
** the matrix C; m >= 0. On exit, m is unchanged.
** int n: On entry, the number of columns of the matrix (op)B and
** of the matrix C; n >= 0. On exit, n is unchanged.
** int k: On entry, the number of columns of the matrix (op)A and
** the number of rows of the matrix (op)B; k >= 0. On exit,
** k is unchanged.
** double alpha: On entry, specifies the scalar alpha. On exit, alpha is
** unchanged.
** double *A: On entry, a two-dimensional array A with dimensions lda
** by ka. For (op)A = A or conjugate(A), ka >= k and the
** leading m by k portion of the array A contains the matrix
** A. For (op)A = transp(A) or conjug_transp(A), ka >= m
** and the leading k by m part of the array A contains the
** matrix A. On exit, a is unchanged.
** int lda: On entry, the first dimension of array A.
** For (op)A = A or conjugate(A), lda >= MAX(1,m).
** For (op)A=transp(A) or conjug_transp(A), lda >= MAX(1,k).
** On exit, lda is unchanged.
** double *B: On entry, a two-dimensional array B with dimensions ldb
** by kb. For (op)B = B or conjugate(B), kb >= n and the
** leading k by n portion of the array contains the matrix
** B. For (op)B = transp(B) or conjug_transp(B), kb >= k and
** the leading n by k part of the array contains the matrix
** B. On exit, B is unchanged.
** int ldb: On entry, the first dimension of array B.
** For (op)B = B or <conjugate(B), ldb >= MAX(1,k).
** For (op)B = transp(B) or conjug_transp(B), ldb >=
** MAX(1,n). On exit, ldb is unchanged.
** double *beta: On entry, specifies the scalar beta. On exit, beta is
** unchanged.
** double C: On entry, a two-dimensional array with the dimension
** ldc by at least n. On exit, the leading m by n part of
** array C is overwritten by the matrix alpha*(op)A*(op)B +
** beta*C.
** int ldc: On entry, the first dimension of array C; ldc >=MAX(1,m)
** On exit, ldc is unchanged.
**
*/
inline void DGEMM(char transa, char transb, FORTINT m, FORTINT n, FORTINT k, double alpha,
double *A, FORTINT lda, double *B, FORTINT ldb, double beta, double *C,
FORTINT ldc)
{
#ifdef AIX
dgemm(&transa,&transb,&m,&n,&k,&alpha,A,&lda,B,&ldb,&beta,C,&ldc);
#else
dgemm_(&transa,&transb,&m,&n,&k,&alpha,A,&lda,B,&ldb,&beta,C,&ldc);
#endif
}
inline void DGEMV(char trans, FORTINT m, FORTINT n, double alpha,
double *A, FORTINT lda, double *X, FORTINT incx, double beta, double *Y, FORTINT incy)
{
#ifdef AIX
dgemv(&trans,&m,&n,&alpha,A,&lda,X,&incx,&beta,Y,&incy);
#else
dgemv_(&trans,&m,&n,&alpha,A,&lda,X,&incx,&beta,Y,&incy);
#endif
}
inline void DSYEV(char JOBZ, char UPLO, FORTINT N, double* A, FORTINT LDA, double* W, double* WORK, FORTINT LWORK, FORTINT INFO )
{
#ifdef AIX
dsyev(&JOBZ,&UPLO,&N,A,&LDA,W,WORK,&LWORK,&INFO);
#else
dsyev_(&JOBZ,&UPLO,&N,A,&LDA,W,WORK,&LWORK,&INFO);
#endif
}
inline void DSTEV(char JOBZ, FORTINT N, double* D, double* E, double* vec, FORTINT LDA, double* W, FORTINT INFO )
{
#ifdef AIX
dstev(&JOBZ,&N,D,E,vec,&LDA,W,&INFO);
#else
dstev_(&JOBZ,&N,D,E,vec,&LDA,W,&INFO);
#endif
}
inline void GESV(FORTINT n, FORTINT nrhs, double* a, FORTINT lda, FORTINT* ipiv, double* b, FORTINT ldb, FORTINT info)
{
#ifdef AIX
dgesv(&n, &nrhs, a, &lda, ipiv, b, &ldb, &info);
#else
dgesv_(&n, &nrhs, a, &lda, ipiv, b, &ldb, &info);
#endif
}
inline void SGEMM(char transa, char transb, FORTINT m, FORTINT n, FORTINT k, float alpha,
float *A, FORTINT lda, float *B, FORTINT ldb, float beta, float *C,
FORTINT ldc)
{
#ifdef AIX
sgemm(&transa,&transb,&m,&n,&k,&alpha,A,&lda,B,&ldb,&beta,C,&ldc);
#else
sgemm_(&transa,&transb,&m,&n,&k,&alpha,A,&lda,B,&ldb,&beta,C,&ldc);
#endif
}
// singular value decomposition
inline void DGESVD(char JOBU, char JOBVT, FORTINT M, FORTINT N, double* A,
FORTINT LDA, double* S, double* U, FORTINT LDU, double* VT,
FORTINT LDVT,double* WORK, FORTINT LWORK, FORTINT INFO)
{
#ifdef AIX
dgesvd(&JOBU, &JOBVT, &M, &N, A, &LDA, S, U, &LDU, VT, &LDVT, WORK, &LWORK,
&INFO);
#else
dgesvd_(&JOBU, &JOBVT, &M, &N, A, &LDA, S, U, &LDU, VT, &LDVT, WORK, &LWORK,
&INFO);
#endif
}
/*
**
** void DSCAL(int ntot, double coeff, double *data, int inc);
**
** This function scales ntot elements from array data with coeff and increment
** inc : data*=coeff
**
** int ntot: length of data to scale
** double *data: data to scale
** int inc: increments for data
*/
inline void DSCAL(FORTINT size, double coeff, double *data, FORTINT inc)
{
if( 1.!=coeff )
#ifdef AIX
dscal(&size,&coeff,data,&inc);
#else
dscal_(&size,&coeff,data,&inc);
#endif
}
inline void SSCAL(FORTINT size, float coeff, float *data, FORTINT inc)
{
if( 1.!=coeff )
#ifdef AIX
sscal(&size,&coeff,data,&inc);
#else
sscal_(&size,&coeff,data,&inc);
#endif
}
#endif