-
Notifications
You must be signed in to change notification settings - Fork 282
/
make_tfrecords.py
127 lines (117 loc) · 5.3 KB
/
make_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from __future__ import print_function
import tensorflow as tf
import numpy as np
from collections import namedtuple, OrderedDict
from subprocess import call
import scipy.io.wavfile as wavfile
import argparse
import codecs
import timeit
import struct
import toml
import re
import sys
import os
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def slice_signal(signal, window_size, stride=0.5):
""" Return windows of the given signal by sweeping in stride fractions
of window
"""
assert signal.ndim == 1, signal.ndim
n_samples = signal.shape[0]
offset = int(window_size * stride)
slices = []
for beg_i, end_i in zip(range(0, n_samples, offset),
range(window_size, n_samples + offset,
offset)):
if end_i - beg_i < window_size:
break
slice_ = signal[beg_i:end_i]
if slice_.shape[0] == window_size:
slices.append(slice_)
return np.array(slices, dtype=np.int32)
def read_and_slice(filename, wav_canvas_size, stride=0.5):
fm, wav_data = wavfile.read(filename)
if fm != 16000:
raise ValueError('Sampling rate is expected to be 16kHz!')
signals = slice_signal(wav_data, wav_canvas_size, stride)
return signals
def encoder_proc(wav_filename, noisy_path, out_file, wav_canvas_size):
""" Read and slice the wav and noisy files and write to TFRecords.
out_file: TFRecordWriter.
"""
ppath, wav_fullname = os.path.split(wav_filename)
noisy_filename = os.path.join(noisy_path, wav_fullname)
wav_signals = read_and_slice(wav_filename, wav_canvas_size)
noisy_signals = read_and_slice(noisy_filename, wav_canvas_size)
assert wav_signals.shape == noisy_signals.shape, noisy_signals.shape
for (wav, noisy) in zip(wav_signals, noisy_signals):
wav_raw = wav.tostring()
noisy_raw = noisy.tostring()
example = tf.train.Example(features=tf.train.Features(feature={
'wav_raw': _bytes_feature(wav_raw),
'noisy_raw': _bytes_feature(noisy_raw)}))
out_file.write(example.SerializeToString())
def main(opts):
if not os.path.exists(opts.save_path):
# make save path if it does not exist
os.makedirs(opts.save_path)
# set up the output filepath
out_filepath = os.path.join(opts.save_path, opts.out_file)
if os.path.splitext(out_filepath)[1] != '.tfrecords':
# if wrong extension or no extension appended, put .tfrecords
out_filepath += '.tfrecords'
else:
out_filename, ext = os.path.splitext(out_filepath)
out_filepath = out_filename + ext
# check if out_file exists and if force flag is set
if os.path.exists(out_filepath) and not opts.force_gen:
raise ValueError('ERROR: {} already exists. Set force flag (--force-gen) to '
'overwrite. Skipping this speaker.'.format(out_filepath))
elif os.path.exists(out_filepath) and opts.force_gen:
print('Will overwrite previously existing tfrecords')
os.unlink(out_filepath)
with open(opts.cfg) as cfh:
# read the configuration description
cfg_desc = toml.loads(cfh.read())
beg_enc_t = timeit.default_timer()
out_file = tf.python_io.TFRecordWriter(out_filepath)
# process the acoustic and textual data now
for dset_i, (dset, dset_desc) in enumerate(cfg_desc.iteritems()):
print('-' * 50)
wav_dir = dset_desc['clean']
wav_files = [os.path.join(wav_dir, wav) for wav in
os.listdir(wav_dir) if wav.endswith('.wav')]
noisy_dir = dset_desc['noisy']
nfiles = len(wav_files)
for m, wav_file in enumerate(wav_files):
print('Processing wav file {}/{} {}{}'.format(m + 1,
nfiles,
wav_file,
' ' * 10),
end='\r')
sys.stdout.flush()
encoder_proc(wav_file, noisy_dir, out_file, 2 ** 14)
out_file.close()
end_enc_t = timeit.default_timer() - beg_enc_t
print('')
print('*' * 50)
print('Total processing and writing time: {} s'.format(end_enc_t))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Convert the set of txt and '
'wavs to TFRecords')
parser.add_argument('--cfg', type=str, default='cfg/e2e_maker.cfg',
help='File containing the description of datasets '
'to extract the info to make the TFRecords.')
parser.add_argument('--save_path', type=str, default='data/',
help='Path to save the dataset')
parser.add_argument('--out_file', type=str, default='segan.tfrecords',
help='Output filename')
parser.add_argument('--force-gen', dest='force_gen', action='store_true',
help='Flag to force overwriting existing dataset.')
parser.set_defaults(force_gen=False)
opts = parser.parse_args()
main(opts)