forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
particlefire.cpp
594 lines (500 loc) · 22.2 KB
/
particlefire.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*
* Vulkan Example - CPU based fire particle system
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#define ENABLE_VALIDATION false
#define PARTICLE_COUNT 512
#define PARTICLE_SIZE 10.0f
#define FLAME_RADIUS 8.0f
#define PARTICLE_TYPE_FLAME 0
#define PARTICLE_TYPE_SMOKE 1
struct Particle {
glm::vec4 pos;
glm::vec4 color;
float alpha;
float size;
float rotation;
uint32_t type;
// Attributes not used in shader
glm::vec4 vel;
float rotationSpeed;
};
class VulkanExample : public VulkanExampleBase
{
public:
struct {
struct {
vks::Texture2D smoke;
vks::Texture2D fire;
// Use a custom sampler to change sampler attributes required for rotating the uvs in the shader for alpha blended textures
VkSampler sampler;
} particles;
struct {
vks::Texture2D colorMap;
vks::Texture2D normalMap;
} floor;
} textures;
vkglTF::Model environment;
glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f);
glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f);
glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f);
struct {
VkBuffer buffer;
VkDeviceMemory memory;
// Store the mapped address of the particle data for reuse
void *mappedMemory;
// Size of the particle buffer in bytes
size_t size;
} particles;
struct {
vks::Buffer fire;
vks::Buffer environment;
} uniformBuffers;
struct UBOVS {
glm::mat4 projection;
glm::mat4 modelView;
glm::vec2 viewportDim;
float pointSize = PARTICLE_SIZE;
} uboVS;
struct UBOEnv {
glm::mat4 projection;
glm::mat4 modelView;
glm::mat4 normal;
glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f);
} uboEnv;
struct {
VkPipeline particles;
VkPipeline environment;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSetLayout descriptorSetLayout;
struct {
VkDescriptorSet particles;
VkDescriptorSet environment;
} descriptorSets;
std::vector<Particle> particleBuffer;
std::default_random_engine rndEngine;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
title = "CPU based particle system";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -75.0f));
camera.setRotation(glm::vec3(-15.0f, 45.0f, 0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
timerSpeed *= 8.0f;
rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr));
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
textures.particles.smoke.destroy();
textures.particles.fire.destroy();
textures.floor.colorMap.destroy();
textures.floor.normalMap.destroy();
vkDestroyPipeline(device, pipelines.particles, nullptr);
vkDestroyPipeline(device, pipelines.environment, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkUnmapMemory(device, particles.memory);
vkDestroyBuffer(device, particles.buffer, nullptr);
vkFreeMemory(device, particles.memory, nullptr);
uniformBuffers.environment.destroy();
uniformBuffers.fire.destroy();
vkDestroySampler(device, textures.particles.sampler, nullptr);
}
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0,0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
// Environment
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.environment, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.environment);
environment.draw(drawCmdBuffers[i]);
// Particle system (no index buffer)
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.particles, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles);
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &particles.buffer, offsets);
vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0);
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
float rnd(float range)
{
std::uniform_real_distribution<float> rndDist(0.0f, range);
return rndDist(rndEngine);
}
void initParticle(Particle *particle, glm::vec3 emitterPos)
{
particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f);
particle->alpha = rnd(0.75f);
particle->size = 1.0f + rnd(0.5f);
particle->color = glm::vec4(1.0f);
particle->type = PARTICLE_TYPE_FLAME;
particle->rotation = rnd(2.0f * float(M_PI));
particle->rotationSpeed = rnd(2.0f) - rnd(2.0f);
// Get random sphere point
float theta = rnd(2.0f * float(M_PI));
float phi = rnd(float(M_PI)) - float(M_PI) / 2.0f;
float r = rnd(FLAME_RADIUS);
particle->pos.x = r * cos(theta) * cos(phi);
particle->pos.y = r * sin(phi);
particle->pos.z = r * sin(theta) * cos(phi);
particle->pos += glm::vec4(emitterPos, 0.0f);
}
void transitionParticle(Particle *particle)
{
switch (particle->type)
{
case PARTICLE_TYPE_FLAME:
// Flame particles have a chance of turning into smoke
if (rnd(1.0f) < 0.05f)
{
particle->alpha = 0.0f;
particle->color = glm::vec4(0.25f + rnd(0.25f));
particle->pos.x *= 0.5f;
particle->pos.z *= 0.5f;
particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f);
particle->size = 1.0f + rnd(0.5f);
particle->rotationSpeed = rnd(1.0f) - rnd(1.0f);
particle->type = PARTICLE_TYPE_SMOKE;
}
else
{
initParticle(particle, emitterPos);
}
break;
case PARTICLE_TYPE_SMOKE:
// Respawn at end of life
initParticle(particle, emitterPos);
break;
}
}
void prepareParticles()
{
particleBuffer.resize(PARTICLE_COUNT);
for (auto& particle : particleBuffer)
{
initParticle(&particle, emitterPos);
particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f));
}
particles.size = particleBuffer.size() * sizeof(Particle);
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
particles.size,
&particles.buffer,
&particles.memory,
particleBuffer.data()));
// Map the memory and store the pointer for reuse
VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory));
}
void updateParticles()
{
float particleTimer = frameTimer * 0.45f;
for (auto& particle : particleBuffer)
{
switch (particle.type)
{
case PARTICLE_TYPE_FLAME:
particle.pos.y -= particle.vel.y * particleTimer * 3.5f;
particle.alpha += particleTimer * 2.5f;
particle.size -= particleTimer * 0.5f;
break;
case PARTICLE_TYPE_SMOKE:
particle.pos -= particle.vel * frameTimer * 1.0f;
particle.alpha += particleTimer * 1.25f;
particle.size += particleTimer * 0.125f;
particle.color -= particleTimer * 0.05f;
break;
}
particle.rotation += particleTimer * particle.rotationSpeed;
// Transition particle state
if (particle.alpha > 2.0f)
{
transitionParticle(&particle);
}
}
size_t size = particleBuffer.size() * sizeof(Particle);
memcpy(particles.mappedMemory, particleBuffer.data(), size);
}
void loadAssets()
{
// Particles
textures.particles.smoke.loadFromFile(getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
textures.particles.fire.loadFromFile(getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Floor
textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/fireplace_colormap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/fireplace_normalmap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
// Create a custom sampler to be used with the particle textures
// Create sampler
VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo();
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
// Different address mode
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU;
samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU;
samplerCreateInfo.mipLodBias = 0.0f;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0f;
// Both particle textures have the same number of mip maps
samplerCreateInfo.maxLod = float(textures.particles.fire.mipLevels);
if (vulkanDevice->features.samplerAnisotropy)
{
// Enable anisotropic filtering
samplerCreateInfo.maxAnisotropy = 8.0f;
samplerCreateInfo.anisotropyEnable = VK_TRUE;
}
// Use a different border color (than the normal texture loader) for additive blending
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler));
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
environment.loadFromFile(getAssetPath() + "models/fireplace.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void setupDescriptorPool()
{
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT,2)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout));
}
void setupDescriptorSets()
{
std::vector<VkWriteDescriptorSet> writeDescriptorSets;
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.particles));
// Image descriptor for the color map texture
VkDescriptorImageInfo texDescriptorSmoke =
vks::initializers::descriptorImageInfo(
textures.particles.sampler,
textures.particles.smoke.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
VkDescriptorImageInfo texDescriptorFire =
vks::initializers::descriptorImageInfo(
textures.particles.sampler,
textures.particles.fire.view,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.fire.descriptor),
// Binding 1: Smoke texture
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke),
// Binding 1: Fire texture array
vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire)
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
// Environment
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.environment));
writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.environment.descriptor),
// Binding 1: Color map
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor),
// Binding 2: Normal map
vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor),
};
vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = shaderStages.size();
pipelineCI.pStages = shaderStages.data();
// Particle rendering pipeline
{
// Vertex input state
VkVertexInputBindingDescription vertexInputBinding =
vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX);
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, color)), // Location 1: Color
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32_SFLOAT, offsetof(Particle, alpha)), // Location 2: Alpha
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32_SFLOAT, offsetof(Particle, size)), // Location 3: Size
vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32_SFLOAT, offsetof(Particle, rotation)), // Location 4: Rotation
vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32_SINT, offsetof(Particle, type)), // Location 5: Particle type
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = 1;
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCI.pVertexInputState = &vertexInputState;
// Don t' write to depth buffer
depthStencilState.depthWriteEnable = VK_FALSE;
// Premulitplied alpha
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
shaderStages[0] = loadShader(getShadersPath() + "particlefire/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "particlefire/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.particles));
}
// Environment rendering pipeline (normal mapped)
{
// Vertex input state is taken from the glTF model loader
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Tangent });
blendAttachmentState.blendEnable = VK_FALSE;
depthStencilState.depthWriteEnable = VK_TRUE;
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
shaderStages[0] = loadShader(getShadersPath() + "particlefire/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "particlefire/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.environment));
}
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.fire,
sizeof(uboVS)));
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.environment,
sizeof(uboEnv)));
// Map persistent
VK_CHECK_RESULT(uniformBuffers.fire.map());
VK_CHECK_RESULT(uniformBuffers.environment.map());
updateUniformBuffers();
}
void updateUniformBufferLight()
{
// Environment
uboEnv.lightPos.x = sin(timer * 2.0f * float(M_PI)) * 1.5f;
uboEnv.lightPos.y = 0.0f;
uboEnv.lightPos.z = cos(timer * 2.0f * float(M_PI)) * 1.5f;
memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv));
}
void updateUniformBuffers()
{
// Particle system fire
uboVS.projection = camera.matrices.perspective;
uboVS.modelView = camera.matrices.view;
uboVS.viewportDim = glm::vec2((float)width, (float)height);
memcpy(uniformBuffers.fire.mapped, &uboVS, sizeof(uboVS));
// Environment
uboEnv.projection = camera.matrices.perspective;
uboEnv.modelView = camera.matrices.view;
uboEnv.normal = glm::inverseTranspose(uboEnv.modelView);
memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv));
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be submitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareParticles();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSets();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
if (!paused)
{
updateUniformBufferLight();
updateParticles();
}
if (camera.updated)
{
updateUniformBuffers();
}
}
};
VULKAN_EXAMPLE_MAIN()