-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogger.py
80 lines (63 loc) · 2.63 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Logger class used to pass data to Tensorboard, for training monitoring purpose.
"""
# Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514
import tensorflow as tf
import numpy as np
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger(object):
def __init__(self, log_dir):
"""Create a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def scalar_summary(self, info, step):
"""Log a scalar variable."""
summary_values = []
for tag, value in info.items():
summary_values.append(tf.Summary.Value(tag = tag, simple_value = value))
summary = tf.Summary(value = summary_values)
self.writer.add_summary(summary, step)
def image_summary(self, tag, images, step):
"""Log a list of images."""
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format = "png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string = s.getvalue(),
height = img.shape[0],
width = img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag = '%s/%d' % (tag, i), image = img_sum))
# Create and write Summary
summary = tf.Summary(value = img_summaries)
self.writer.add_summary(summary, step)
def histo_summary(self, tag, values, step, bins = 1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins = bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value = [tf.Summary.Value(tag = tag, histo = hist)])
self.writer.add_summary(summary, step)
self.writer.flush()