-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVRP-SPD.py
138 lines (96 loc) · 3.23 KB
/
VRP-SPD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from mip import Model, xsum, minimize, BINARY
import random as rd
import math
from sys import stdout as out
def dist(a, b):
return math.sqrt((a[0]-b[0])**2 + (a[1]-b[1])**2)
n_customer = 10
n_nodes = n_customer + 1 # 1 for warehouse
nodes = [ (rd.randint(0, 10), rd.randint(0, 10)) for _ in range(n_nodes)]
graph = [[0 for _ in range(n_nodes)] for _ in range(n_nodes)]
for i in range(n_nodes):
for j in range(n_nodes):
graph[i][j] = dist(nodes[i], nodes[j])
capacity = 100
P = [ 0 for _ in range(n_customer)]
D = [ rd.randint(0,10) for _ in range(n_customer)]
V = no_vehicle = 1
c = graph
# Decision Parameters
model = Model()
x = [[[model.add_var(var_type=BINARY) for _ in range(n_nodes)] for _ in range(n_nodes)] for _ in range(V)]
S = [model.add_var() for _ in range(n_customer)]
Iv = [model.add_var() for _ in range(V)]
Ij = [model.add_var() for _ in range(n_customer)]
pd_max = max(P+D)
c_max = sum([c[i][j] for i in range(n_nodes) for j in range(n_nodes)])
M = max(pd_max, c_max)
# print (M)
# Ojective Function
model.objective = minimize(xsum(c[i][j]*x[k][i][j] for k in range(no_vehicle) for i in range(n_nodes) for j in range(n_nodes)))
# Constraints
# 3.
# range(1,n_nodes) refers to excluding warehouse
for j in range(1, n_nodes):
model += xsum(x[v][i][j] for i in range(n_nodes) for v in range(no_vehicle) if i!=j) == 1
# 4.
for v in range(no_vehicle):
for k in range(1,n_nodes):
model += xsum(x[v][i][k] for i in range(n_nodes)) == xsum(x[v][k][j] for j in range(n_nodes))
# 5.
for v in range(no_vehicle):
model += xsum(D[j-1] * x[v][i][j] for i in range(n_nodes) for j in range(1,n_nodes)) == Iv[v]
# 6.
for v in range(no_vehicle):
for j in range(1, n_nodes):
model += Ij[j-1] >= Iv[v] - D[j-1] + P[j-1] - M*(1-x[v][0][j])
# 7.
for i in range(1, n_nodes):
for j in range(1, n_nodes):
if i != j:
model += Ij[j-1] >= Ij[i-1] - D[j-1] + P[j-1] - M*(1 - xsum(x[v][i][j] for v in range(no_vehicle)))
# 8.
for i in range(no_vehicle):
model += Iv[v] <= capacity
# 9.
for i in range(n_customer):
model += Ij[i] <= capacity
# 10.
for i in range(1, n_nodes):
for j in range(1, n_nodes):
if i!=j:
model += S[j-1] >= S[i-1] + 1 - n_nodes*(1- xsum(x[v][i][j] for v in range(no_vehicle)))
# 11.
for i in range(n_customer):
model += S[i] >= 0
model.optimize(max_seconds=30)
# print ("graph", c)
# print (D)
print ("--"*15)
for i in c:
print (i)
print ("--"*15)
# checking if a solution was found
if model.num_solutions:
# print ("******"*15)
# out.write('route with total distance %g found: %s'
# % (model.objective_value, places[0]))
# nc = 0
# while True:
# nc = [i for i in V if x[nc][i].x >= 0.99][0]
# out.write(str(nc) + "\n")
# # out.write(' -> %s' % places[nc])
# if nc == 0:
# break
for v in range(no_vehicle):
for i in range(n_nodes):
for k in range(n_nodes):
if x[v][i][k].x>=0.9:
print (i, k)
# print (x[v][i][j].x)
print ("--"*15)
print ("Sequence in oder will be delivered")
for i in range(n_customer):
print (S[i].x)
print ("--"*15)
out.write('\n')