forked from cpq/bare-metal-programming-guide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhal.h
354 lines (305 loc) · 11.2 KB
/
hal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// SPDX-FileCopyrightText: 2022-2023 Cesanta Software Limited
// SPDX-License-Identifier: MIT
//
// https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
#ifndef LED_PIN
#define LED_PIN 2 // Default LED pin
#endif
#ifndef BUTTON_PIN
#define BUTTON_PIN 9 // Default Button pin
#endif
#ifndef UART_DEBUG
#define UART_DEBUG C3_UART
#endif
#pragma once
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BIT(x) ((uint32_t) 1U << (x))
#define REG(x) ((volatile uint32_t *) (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define C3_SYSTEM 0x600c0000
#define C3_SENSITIVE 0x600c1000
#define C3_INTERRUPT 0x600c2000
#define C3_EXTMEM 0x600c4000
#define C3_MMU_TABLE 0x600c5000
#define C3_AES 0x6003a000
#define C3_SHA 0x6003b000
#define C3_RSA 0x6003c000
#define C3_HMAC 0x6003e000
#define C3_DIGITAL_SIGNATURE 0x6003d000
#define C3_GDMA 0x6003f000
#define C3_ASSIST_DEBUG 0x600ce000
#define C3_DEDICATED_GPIO 0x600cf000
#define C3_WORLD_CNTL 0x600d0000
#define C3_DPORT_END 0x600d3FFC
#define C3_UART 0x60000000
#define C3_SPI1 0x60002000
#define C3_SPI0 0x60003000
#define C3_GPIO 0x60004000
#define C3_FE2 0x60005000
#define C3_FE 0x60006000
#define C3_RTCCNTL 0x60008000
#define C3_IO_MUX 0x60009000
#define C3_RTC_I2C 0x6000e000
#define C3_UART1 0x60010000
#define C3_I2C_EXT 0x60013000
#define C3_UHCI0 0x60014000
#define C3_RMT 0x60016000
#define C3_LEDC 0x60019000
#define C3_EFUSE 0x60008800
#define C3_NRX 0x6001CC00
#define C3_BB 0x6001D000
#define C3_TIMERGROUP0 0x6001F000
#define C3_TIMERGROUP1 0x60020000
#define C3_SYSTIMER 0x60023000
#define C3_SPI2 0x60024000
#define C3_SYSCON 0x60026000
#define C3_APB_CTRL 0x60026000
#define C3_TWAI 0x6002B000
#define C3_I2S0 0x6002D000
#define C3_APB_SARADC 0x60040000
#define C3_AES_XTS 0x600CC000
#define CSR_WRITE(reg, val) ({ asm volatile("csrw " #reg ", %0" ::"rK"(val)); })
#define CSR_READ(reg) \
({ \
unsigned long v_; \
asm volatile("csrr %0, " #reg : "=r"(v_)); \
v_; \
})
#define CSR_SETBITS(reg, cm, sm) CSR_WRITE(reg, (CSR_READ(reg) & ~(cm)) | (sm))
struct sysreg { // System registers. 16.4 (incomplete)
volatile uint32_t CPU_PERI_CLK_EN, CPU_PERI_RST_EN, RESERVED0[2], PERIPH_CLK_EN0, PERIPH_CLK_EN1,
PERIPH_RST_EN0, PERIPH_RST_EN1;
};
#define SYSREG ((struct sysreg *) C3_SYSTEM)
struct systimer { // 10.6 (complete)
volatile uint32_t CONF, UNIT0_OP, UNIT1_OP, UNIT0_LOAD_HI, UNIT0_LOAD_LO, UNIT1_LOAD_HI,
UNIT1_LOAD_LO, TARGET0_HI, TARGET0_LO, TARGET1_HI, TARGET1_LO, TARGET2_HI, TARGET2_LO,
TARGET0_CONF, TARGET1_CONF, TARGET2_CONF, UNIT0_VALUE_HI, UNIT0_VALUE_LO, UNIT1_VALUE_HI,
UNIT1_VALUE_LO, COMP0_LOAD, COMP1_LOAD, COMP2_LOAD, UNIT0_LOAD, UNIT1_LOAD, INT_ENA, INT_RAW,
INT_CLR, INT_ST, RESERVED0[34], DATE;
};
#define SYSTIMER ((struct systimer *) C3_SYSTIMER)
struct gpio { // 5.14 (incomplete)
volatile uint32_t BT_SELECT, OUT, OUT_W1TS, OUT_W1TC, RESERVED0[4], ENABLE, ENABLE_W1TS,
ENABLE_W1TC, RESERVED1[3], STRAP, IN, RESERVED2[1], STATUS, STATUS_W1TS, STATUS_W1TC,
RESERVED3[3], PCPU_INT, PCPU_NMI_INT,
// TODO(cpq): complete next
STATUS_NEXT, PIN[22], FUNC_IN[128], FUNC_OUT[22], DATE, CLOCK_GATE;
};
#define GPIO ((struct gpio *) C3_GPIO)
struct io_mux { // 5.14 (incomplete)
volatile uint32_t PIN_CTRL, IO[22];
};
#define IO_MUX ((struct io_mux *) C3_IO_MUX)
enum { GPIO_OUT_EN = 8, GPIO_OUT_FUNC = 341, GPIO_IN_FUNC = 85 };
// Perform `count` "NOP" operations
static inline void spin(volatile unsigned long count) {
while (count--) asm volatile("nop");
}
static inline uint64_t systick(void) {
SYSTIMER->UNIT0_OP = BIT(30); // TRM 10.5
spin(1);
return ((uint64_t) SYSTIMER->UNIT0_VALUE_HI << 32) | SYSTIMER->UNIT0_VALUE_LO;
}
static inline uint64_t uptime_us(void) {
return systick() >> 4;
}
static inline void delay_us(unsigned long us) {
uint64_t until = uptime_us() + us;
while (uptime_us() < until) spin(1);
}
static inline void delay_ms(unsigned long ms) {
delay_us(ms * 1000);
}
static inline void wdt_disable(void) {
REG(C3_RTCCNTL)[42] = 0x50d83aa1; // Disable write protection
// REG(C3_RTCCNTL)[36] &= BIT(31); // Disable RTC WDT
REG(C3_RTCCNTL)[36] = 0; // Disable RTC WDT
REG(C3_RTCCNTL)[35] = 0; // Disable
// bootloader_super_wdt_auto_feed()
REG(C3_RTCCNTL)[44] = 0x8F1D312A;
REG(C3_RTCCNTL)[43] |= BIT(31);
REG(C3_RTCCNTL)[45] = 0;
// REG(C3_TIMERGROUP0)[63] &= ~BIT(9); // TIMG_REGCLK -> disable TIMG_WDT_CLK
REG(C3_TIMERGROUP0 + 0x48)[0] = 0; // Disable TG0 WDT
REG(C3_TIMERGROUP1 + 0x48)[0] = 0; // Disable TG1 WDT
}
static inline void wifi_get_mac_addr(uint8_t mac[6]) {
uint32_t a = REG(C3_EFUSE)[17], b = REG(C3_EFUSE)[18];
mac[0] = (b >> 8) & 255, mac[1] = b & 255, mac[2] = (uint8_t) (a >> 24) & 255;
mac[3] = (a >> 16) & 255, mac[4] = (a >> 8) & 255, mac[5] = a & 255;
}
static inline void set_irq_handler(void (*fn)(void)) {
CSR_WRITE(mtvec, (uintptr_t) fn);
}
static inline void soc_init(void) {
// Init clock. TRM 6.2.4.1
// REG(C3_SYSTEM)[2] &= ~3U;
// REG(C3_SYSTEM)[2] |= BIT(0) | BIT(2);
// REG(C3_SYSTEM)[22] = BIT(19) | (40U << 12) | BIT(10);
// REG(C3_RTCCNTL)[47] = 0; // RTC_APB_FREQ_REG -> freq >> 12
//((void (*)(int)) 0x40000588)(160); // ets_update_cpu_frequency(160)
wdt_disable();
#if 0
// Configure system clock timer, TRM 8.3.1, 8.9
REG(C3_TIMERGROUP0)[1] = REG(C3_TIMERGROUP0)[2] = 0UL; // Reset LO and HI
REG(C3_TIMERGROUP0)[8] = 0; // Trigger reload
REG(C3_TIMERGROUP0)[0] = (83U << 13) | BIT(12) | BIT(29) | BIT(30) | BIT(31);
#endif
}
// API GPIO
static inline void gpio_output_enable(int pin, bool enable) {
GPIO->ENABLE &= ~BIT(pin);
GPIO->ENABLE |= (enable ? 1U : 0U) << pin;
// SETBITS(GPIO->ENABLE, BIT(pin), (enable ? BIT(pin) : 0U));
}
static inline void gpio_output(int pin) {
REG(C3_GPIO)[GPIO_OUT_FUNC + pin] = BIT(9) | 128; // Simple out, TRM 5.5.3
gpio_output_enable(pin, 1);
}
static inline void gpio_write(int pin, bool value) {
GPIO->OUT &= ~BIT(pin); // Clear first
GPIO->OUT |= (value ? 1U : 0U) << pin; // Then set
}
static inline void gpio_toggle(int pin) {
GPIO->OUT ^= BIT(pin);
}
static inline void gpio_input(int pin) {
gpio_output_enable(pin, 0); // Disable output
IO_MUX->IO[pin] = BIT(9) | BIT(8); // Enable pull-up
}
static inline bool gpio_read(int pin) {
return GPIO->IN & BIT(pin) ? 1 : 0;
}
// API SPI
struct spi {
int miso, mosi, clk, cs; // Pins
int spin; // Number of NOP spins for bitbanging
};
static inline void spi_begin(struct spi *spi) {
gpio_write(spi->cs, 0);
}
static inline void spi_end(struct spi *spi) {
gpio_write(spi->cs, 1);
}
static inline bool spi_init(struct spi *spi) {
if (spi->miso < 0 || spi->mosi < 0 || spi->clk < 0) return false;
gpio_input(spi->miso);
gpio_output(spi->mosi);
gpio_output(spi->clk);
if (spi->cs >= 0) {
gpio_output(spi->cs);
gpio_write(spi->cs, 1);
}
return true;
}
// Send a byte, and return a received byte
static inline unsigned char spi_txn(struct spi *spi, unsigned char tx) {
unsigned count = spi->spin <= 0 ? 9 : (unsigned) spi->spin;
unsigned char rx = 0;
for (int i = 0; i < 8; i++) {
gpio_write(spi->mosi, tx & 0x80); // Set mosi
spin(count); // Wait half cycle
gpio_write(spi->clk, 1); // Clock high
rx = (unsigned char) (rx << 1); // "rx <<= 1" gives warning??
if (gpio_read(spi->miso)) rx |= 1; // Read miso
spin(count); // Wait half cycle
gpio_write(spi->clk, 0); // Clock low
tx = (unsigned char) (tx << 1); // Again, avoid warning
}
return rx; // Return the received byte
}
// API WS2812
static inline void ws2812_show(int pin, const uint8_t *buf, size_t len) {
unsigned long delays[2] = {2, 6};
for (size_t i = 0; i < len; i++) {
for (uint8_t mask = 0x80; mask; mask >>= 1) {
int i1 = buf[i] & mask ? 1 : 0, i2 = i1 ^ 1; // This takes some cycles
gpio_write(pin, 1);
spin(delays[i1]);
gpio_write(pin, 0);
spin(delays[i2]);
}
}
}
static inline void clock_init(void) {
}
static inline uint32_t clock_sys_freq(void) {
return 160000000U;
}
static inline bool uart_init(uint32_t uart, int baud) {
(void) uart, (void) baud;
return false;
}
// t: expiration time, prd: period, now: current time. Return true if expired
static inline bool timer_expired(volatile uint64_t *t, uint64_t prd, uint64_t now) {
if (now + prd < *t) *t = 0; // Time wrapped? Reset timer
if (*t == 0) *t = now + prd; // Firt poll? Set expiration
if (*t > now) return false; // Not expired yet, return
*t = (now - *t) > prd ? now + prd : *t + prd; // Next expiration time
return true; // Expired, return true
}
struct irq_data {
void (*fn)(void *); // User-defined handler function
void *arg; // User-defined handler function param
void (*clr)(void *); // Interrupt clearance function
void *clr_arg; // Interrupt clearance function param
};
extern struct irq_data g_irq_data[32];
extern int cpu_alloc_interrupt(uint8_t prio /* 1..15 */);
static inline void gpio_clear_interrupt(void *param) {
uint16_t pin = (uint16_t) (uintptr_t) param;
GPIO->STATUS &= ~BIT(pin);
//printf("clearing pin %d irq\n", pin);
}
static inline void gpio_set_irq_handler(uint16_t pin, void (*fn)(void *), void *arg) {
int no = cpu_alloc_interrupt(1);
g_irq_data[no].fn = fn;
g_irq_data[no].arg = arg;
g_irq_data[no].clr = gpio_clear_interrupt;
g_irq_data[no].clr_arg = (void *) (uintptr_t) pin;
REG(C3_INTERRUPT)[0xf8 / 4] |= BIT(16); // Enable CPU IRQ
REG(C3_GPIO)
[0x74 / 4 + pin] |= (3U << 7) | BIT(13); // Enable intr, any edge
REG(C3_INTERRUPT)[0x40 / 4] = (uint32_t) no; // LAST: Map GPIO IRQ to CPU
}
extern void uart_tx_one_char(uint8_t);
#define NIBBLE(c) ((c) < 10 ? (c) + '0' : (c) + 'W')
#define PUTCHAR(c) uart_tx_one_char(c)
static inline void hexdump(const void *buf, size_t len) {
const uint8_t *p = (const uint8_t *) buf;
char ascii[16];
size_t i, j, n = 0;
for (i = 0; i < len; i++) {
if ((i % 16) == 0) {
// Print buffered ascii chars
if (i > 0) {
PUTCHAR(' '), PUTCHAR(' ');
for (j = 0; j < sizeof(ascii); j++) PUTCHAR(ascii[j]);
PUTCHAR('\n'), n = 0;
}
// Print hex address, then \t
PUTCHAR(NIBBLE((i >> 12) & 15)), PUTCHAR(NIBBLE((i >> 8) & 15));
PUTCHAR(NIBBLE((i >> 4) & 15)), PUTCHAR('0');
PUTCHAR(' '), PUTCHAR(' '), PUTCHAR(' ');
}
PUTCHAR(NIBBLE(p[i] >> 4)), PUTCHAR(NIBBLE(p[i] & 15));
PUTCHAR(' '); // Space after hex number
if (p[i] >= ' ' && p[i] <= '~') {
ascii[n++] = (char) p[i]; // Printable
} else {
ascii[n++] = '.'; // Non-printable
}
}
if (n > 0) {
while (n < 16) PUTCHAR(' '), PUTCHAR(' '), PUTCHAR(' '), ascii[n++] = ' ';
PUTCHAR(' '), PUTCHAR(' ');
for (j = 0; j < sizeof(ascii); j++) PUTCHAR(ascii[j]);
}
PUTCHAR('\n');
}