-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctf_read_res4.m
616 lines (479 loc) · 21.4 KB
/
ctf_read_res4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
function [ctf] = ctf_read_res4(folder,VERBOSE,COEFS);
% ctf_read_res4 - Read a CTF .res4 file
%
% ctf = ctf_read_res4( [folder], [verbose], [coefs])
%
% This function reads the resource information from a CTF .ds folder. This
% resource information must be read before reading the .meg4 data file.
% All input arguments are optional.
%
% INPUTS
%
% folder: the .ds directory containing the data to be read. With
% no input, it will prompt with a gui folder locator
% (called by ctf_folder).
%
% verbose: If verbose = 1, display 'ctf.setup' structure (default)
% If verbose = 0, do not display 'ctf.setup' structure
%
% coefs: an option to read the MEG sensor and reference coefficients,
% which give the weights for calculation of synthetic 2nd or 3rd
% order gradiometers.
% If coefs = 1, read the sensor coefficients
% If coefs = 0, do not read the sensor coefficients (this is the
% default because it is assumed that data preprocessing with
% CTF tools has already applied AND saved a synthetic
% gradiometer transformation for the meg4 data file). The
% ctf.sensor.info(x).grad_order_no will indicate the gradient
% order of the data (this only applies to MEG sensors, other
% channels have zero values).
%
% OUTPUTS
%
% ctf.folder - path of the .ds folder
%
% ctf.res4.file - data file path/name
% ctf.res4.header - data format header
%
% ctf.setup - a header structure consisting of date, time, run name, run
% title, subject, run description, operator, number of channels, number
% of samples, sample rate, number of trials, duration, pretrigger_samples,
% sensor filename, head zeroing, and number of filters.
%
% ctf.sensor.index - a sensor structure consisting of EEG sensors, MEG
% sensors, reference sensors, and other sensors.
%
% ctf.sensor.info - a structure with gain and offset information consisting
% of proper gain, Q gain, io gain, io offset, and index.
%
% The proper gain is the channel-wide constant quotient of a value in raw
% units and a value in user units. (For EEG this is one because there is
% no conversion; i.e., the values are in volts, for MEG there is conversion
% between phi0 and teslas).
% proper gain = raw value / user value
%
% The Q-gain is used to convert the 32-bit integers produced by the
% electronics to the raw values stored in the data file.
% raw value = 32 bit value / Q gain
%
% The IO-gain is essentially a correction factor that is applied to the
% raw values before they are stored to disk.
%
%
% <>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
% < >
% < DISCLAIMER: >
% < >
% < THIS PROGRAM IS INTENDED FOR RESEARCH PURPOSES ONLY. >
% < THIS PROGRAM IS IN NO WAY INTENDED FOR CLINICAL OR >
% < OFFICIAL USE. >
% < >
% <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>
%
% $Revision: 1.1 $ $Date: 2009-01-30 03:49:27 $
% Copyright (C) 2003 Darren L. Weber
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
% Modified: 11/2003, Darren.Weber_at_radiology.ucsf.edu
% - modified from NIH code readresfile.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ver = '$Revision: 1.1 $';
fprintf('\nCTF_READ_RES4 [v %s]\n',ver(11:15)); tic;
if ~exist('folder','var'),
ctf = ctf_folder;
else
ctf = ctf_folder(folder);
end
%[folderPath,folderName,folderExt] = fileparts(ctf.folder);
ctf.res4.file = findres4file(ctf.folder);
if ~exist('VERBOSE','var'), VERBOSE = 1; end
if ~exist('COEFS','var'), COEFS = 0; end
%----------------------------------------------------------------
% open the data file
[fid,message] = fopen(ctf.res4.file,'rb','ieee-be.l64');
if fid < 0, error('cannot open .res4 file'); end
%-------------------------------------------------------------
% READ HEADER
fseek(fid,0,-1);
ctf.res4.header = char(fread(fid,8,'char'))';
% check for the right format
if strmatch('MEG41RS',ctf.res4.header),
% OK, we can handle this format
else
msg = sprintf('This function is designed to read MEG41RS format.\nIt may not read "%s" format correctly',ctf.res4.header);
warning(msg);
end
%-------------------------------------------------------------
% READ SETUP
%---DATE/TIME
fseek(fid, 778,-1);
ctf.setup.time = char(fread(fid,255,'char'))';
fseek(fid,1033,-1);
ctf.setup.date = char(fread(fid,255,'char'))';
%---NUMBER OF SAMPLES
fseek(fid,1288,-1);
ctf.setup.number_samples = (fread(fid,1,'int32')');
%---NUMBER OF CHANNELS
fseek(fid,1292,-1);
ctf.setup.number_channels = (fread(fid,1,'int16')');
%---SAMPLE RATE
fseek(fid,1296,-1);
ctf.setup.sample_rate = fread(fid,1,'double')';
ctf.setup.sample_msec = 1000 / ctf.setup.sample_rate;
ctf.setup.sample_sec = 1 / ctf.setup.sample_rate;
%---NUMBER OF TRIALS
fseek(fid,1312,-1);
ctf.setup.number_trials = fread(fid,1,'int16')';
fseek(fid, 776,-1);
ctf.setup.number_trials_averaged = fread(fid,1,'int16');
%---DURATION
fseek(fid,1304,-1);
ctf.setup.duration_total = fread(fid,1,'double');
ctf.setup.duration_trial = ctf.setup.duration_total / ctf.setup.number_trials;
%---PRE_TRIG POINTS
fseek(fid,1316,-1);
ctf.setup.pretrigger_samples = fread(fid,1,'int32');
ctf.setup.pretrigger_msec = (ctf.setup.pretrigger_samples / ctf.setup.sample_rate) * 1000;
%---HEAD ZEROING
fseek(fid,1348,-1);
h_zero = fread(fid,1,'int32')';
no_yes = {'no','yes'};
ctf.setup.head_zero = no_yes{h_zero+1};
%---RUN NAME
fseek(fid,1360,-1);
ctf.setup.run_name = char(fread(fid,32,'char'))';
%---RUN TITLE
fseek(fid,1392,-1);
ctf.setup.run_title = char(fread(fid,256,'char'))';
%---SUBJECT
fseek(fid,1712,-1);
ctf.setup.subject = char(fread(fid,32,'char'))';
%---OPERATOR
fseek(fid,1744,-1);
ctf.setup.operator = char(fread(fid,32,'char'))';
%---SENSOR FILE NAME
fseek(fid,1776,-1);
ctf.setup.sensor_file_name = char(fread(fid,60,'char'))';
%---RUN DESCRIPTION & FILTERS
fseek(fid,1836,-1);
run_size = fread(fid,1,'int32');
fseek(fid,1844,-1);
ctf.setup.run_description = char(fread(fid,run_size,'char'));
ctf.setup.number_filters = fread(fid,1,'int16');
for i = 1:ctf.setup.number_filters,
ctf.setup.filters(i).freq = fread(fid,1,'double');
ctf.setup.filters(i).class = fread(fid,1,'int32');
ctf.setup.filters(i).type = fread(fid,1,'int32');
ctf.setup.filters(i).numparam = fread(fid,1,'int16');
ctf.setup.filters(i).params = fread(fid,ctf.setup.filters(i).numparam,'double');
end
if(COEFS)
b = 1846 + run_size;
if(ctf.setup.number_filters == 0)
np = 0;
else
np = sum([ctf.setup.filters.numparam]);
warning('3rd gradient + hardware filter parameters not fully tested! let''s see what happens... :)');
end
nf = ctf.setup.number_filters;
f = ( nf * 18 ) + ( np * 8 );
offset = b + f + ctf.setup.number_channels * 1360;
end
%-------------------------------------------------------------
% CREATE TIME ARRAYS
% the time arrays must be based on increments of the sample_msec
ctf.setup.time_msec = [0:ctf.setup.number_samples - 1]' * ctf.setup.sample_msec;
ctf.setup.time_msec = ctf.setup.time_msec - ctf.setup.pretrigger_msec;
% adjust the sample point closest to zero so that it is zero, if it
% is reasonably close to zero, say within 3 decimal places for msec timing
zero_index = find(abs(ctf.setup.time_msec) == min(abs(ctf.setup.time_msec)));
zero_value = ctf.setup.time_msec(zero_index);
if (-0.0001 < zero_value) & (zero_value < 0.0001),
ctf.setup.time_msec(zero_index) = 0;
end
ctf.setup.start_msec = ctf.setup.time_msec(1);
ctf.setup.end_msec = ctf.setup.time_msec(end);
ctf.setup.time_sec = ctf.setup.time_msec / 1000;
ctf.setup.start_sec = ctf.setup.time_sec(1);
ctf.setup.end_sec = ctf.setup.time_sec(end);
%-------------------------------------------------------------
% PRINT SETUP
if VERBOSE,
ctf_print_setup(ctf);
end
%-------------------------------------------------------------
% READ SENSOR INFORMATION
ctf.sensor.info = struct(...
'proper_gain',[],...
'q_gain',[],...
'io_gain',[],...
'io_offset',[],...
'index',[],...
'extra',[],...
'label',[],...
'grad_order_no',[]);
% read channel names
for chan = 1:ctf.setup.number_channels,
temp = fread(fid,32,'char');
ctf.sensor.info(chan).label = parse_sensor_label(temp);
end
for chan = 1:ctf.setup.number_channels,
% The proper gain is the channel-wide constant quotient of a value in raw
% units and a value in user units. (For EEG this is one because there is
% no conversion; i.e., the values are in volts, for MEG there is conversion
% between phi0 and teslas).
% proper gain = raw value / user value
%
% The Q-gain is used to convert the 32-bit integers produced by the
% electronics to the raw values stored in the data file.
% raw value = 32 bit value / Q gain
%
% The IO-gain is essentially a correction factor that is applied to the
% raw values before they are stored to disk.
%ftell(fid);
ctf.sensor.info(chan).index = fread(fid,1,'int16');
ctf.sensor.info(chan).extra = fread(fid,1,'int16');
id = fread(fid,1,'int32')+1;
ctf.sensor.info(chan).proper_gain = fread(fid,1,'double');
ctf.sensor.info(chan).q_gain = fread(fid,1,'double');
ctf.sensor.info(chan).io_gain = fread(fid,1,'double');
ctf.sensor.info(chan).io_offset = fread(fid,1,'double');
fread(fid,1,'int16');
ctf.sensor.info(chan).grad_order_no = fread(fid,1,'int16');
fread(fid,1,'int32');
%fseek(fid,ftell(fid)+6,0);
for pos = 1:8,
ctf.sensor.info(chan).coil(pos).position.x = fread(fid,1,'double');
ctf.sensor.info(chan).coil(pos).position.y = fread(fid,1,'double');
ctf.sensor.info(chan).coil(pos).position.z = fread(fid,1,'double');
fread(fid,1,'double');
ctf.sensor.info(chan).coil(pos).orient.x = fread(fid,1,'double');
ctf.sensor.info(chan).coil(pos).orient.y = fread(fid,1,'double');
ctf.sensor.info(chan).coil(pos).orient.z = fread(fid,1,'double');
fread(fid,1,'double');
fread(fid,1,'int16');
fread(fid,1,'int32');
fread(fid,1,'int16');
fread(fid,1,'double');
%fseek(fid,ftell(fid)+56,0);
%fseek(fid,ftell(fid)-80,0);
end
for pos = 1:8,
ctf.sensor.info(chan).hcoil(pos).position.x = fread(fid,1,'double');
ctf.sensor.info(chan).hcoil(pos).position.y = fread(fid,1,'double');
ctf.sensor.info(chan).hcoil(pos).position.z = fread(fid,1,'double');
fread(fid,1,'double');
ctf.sensor.info(chan).hcoil(pos).orient.x = fread(fid,1,'double');
ctf.sensor.info(chan).hcoil(pos).orient.y = fread(fid,1,'double');
ctf.sensor.info(chan).hcoil(pos).orient.z = fread(fid,1,'double');
fread(fid,1,'double');
fread(fid,1,'int16');
fread(fid,1,'int32');
fread(fid,1,'int16');
fread(fid,1,'double');
%fseek(fid,ftell(fid)+56,0);
%fseek(fid,ftell(fid)+80,0);
end
%fseek(fid,ftell(fid)+1288,-1);
end
%-------------------------------------------------------------
% Find channel types and define channel sets, see the
% System Administrators .pdf, 'Channel Sets Configuration'
ctf = ctf_channel_sets(ctf);
%-------------------------------------------------------------
% Channel coordinates, in centimeters, in subject head space
for chan = 1:ctf.setup.number_channels,
switch ctf.sensor.info(chan).index,
case {0,1,5},
%0=Reference Magnetometers
%1=Reference Gradiometers
%5=MEG Channels
coord = [ctf.sensor.info(chan).hcoil(1:2).position];
ctf.sensor.info(chan).location = [coord.x; coord.y; coord.z];
orient = [ctf.sensor.info(chan).hcoil(1).orient];
ctf.sensor.info(chan).orientation = [orient.x; orient.y; orient.z];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This ensures that the orientation of the sensor is away from the
% center of a sphere. It uses the sign of the dot product between
% the orientation vector and the location vector.
tmp = ctf.sensor.info(chan).orientation' * ctf.sensor.info(chan).location;
tmp = sign(tmp(1));
ctf.sensor.info(chan).orientation = tmp * ctf.sensor.info(chan).orientation;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 9,
%EEG Channels
coord = [ctf.sensor.info(chan).hcoil(1:2).position];
ctf.sensor.info(chan).location = [coord.x; coord.y; coord.z];
ctf.sensor.info(chan).orientation = [];
end
end
%-------------------------------------------------------------------------
% assign sensor locations and orientations
% simplify information in the ctf.sensor.info struct
ctf.sensor.location = zeros(3,ctf.setup.number_channels);
ctf.sensor.orientation = zeros(3,ctf.setup.number_channels);
ctf.sensor.label = [];
ctf.sensor.location = [];
ctf.sensor.orientation = [];
for c = 1:ctf.setup.number_channels,
% All channels have a label
ctf.sensor.label{1,c} = strtok(ctf.sensor.info(c).label,'-');
% All channels have a location
% EEG channels do not have any orientation
if length(ctf.sensor.type.meg_ref) > 1, ind2 = 2; else ind2 = 1; end;
switch ctf.sensor.info(c).index,
case {ctf.sensor.type.meg_sens, ctf.sensor.type.meg_ref(1), ctf.sensor.type.meg_ref(ind2)},
% modification above based on bug 438 of EEGLAB - Arnaud Delorme, August 2007
%0=Reference Channels,
%1=More Reference Channels,
%5=MEG Channels
% MEG channels are radial gradiometers, so they have an inner (1) and
% an outer (2) location - it might be better to take the average of
% their locations
if ~isempty(ctf.sensor.info(c).location),
ctf.sensor.location(:,c) = ctf.sensor.info(c).location(:,1);
end
if ~isempty(ctf.sensor.info(c).orientation),
ctf.sensor.orientation(:,c) = ctf.sensor.info(c).orientation(:,1);
end
case ctf.sensor.type.eeg_sens,
%9=EEG Channels
if ~isempty(ctf.sensor.info(c).location),
ctf.sensor.location(:,c) = ctf.sensor.info(c).location(:,1);
end
end
end
%%%%%% Coefficient reading appended by SSD %%%%%%
if(COEFS)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NUMBER OF COEFFICIENTS, byte offset = b+f+nc*1360, byte size = 1
fseek(fid,offset,-1);
ctf.res4.numberCoefficients = fread(fid,1,'int16');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SENSOR COEFFICIENT RECORDS, byte offset = b+f+nc*1360+2, byte size = 1992
if VERBOSE & ctf.res4.numberCoefficients,
fprintf('...reading %d coefficients\n',ctf.res4.numberCoefficients);
end
SENSOR_LABEL = 31;
MAX_NUM_COEFS = 50;
MAX_BALANCING = MAX_NUM_COEFS;
hexadef = {'00000000','47314252','47324252','47334252','47324f49','47334f49'};
strdef = {'NOGRAD','G1BR','G2BR','G3BR','G2OI','G3OI'};
for i = 1:ctf.res4.numberCoefficients,
% read the sensor name (channel label)
temp = fread(fid,[1,32],'char');
sensorName = parse_sensor_label(temp);
sensorIndex = strmatch( sensorName, {ctf.sensor.info.label} );
% read the coefficient type
coefType = fread(fid,1,'bit32');
padding = fread(fid,1,'int32'); % not sure why this is needed???
% read the coefficient record
numberCoefs = fread(fid,1,'int16');
if numberCoefs > MAX_NUM_COEFS,
msg = sprintf('numberCoefs > MAX_NUM_COEFS\n');
warning(msg);
end
sensor_list = char(fread(fid,[SENSOR_LABEL,MAX_BALANCING],'uchar')');
% clean-up the sensor_list
sensor_list = sensor_list(1:numberCoefs,:);
for j=1:numberCoefs,
temp = strtok(sensor_list(j,:),char(0));
temp = strtok(temp,'-');
% check if this sensor is a reference
refLabels = {ctf.sensor.info(ctf.sensor.index.meg_ref).label};
refIndex = strmatch(temp,refLabels);
if refIndex,
% ensure this one has the same label
temp = refLabels{refIndex};
end
new_sensor_list(j) = refIndex;
end
sensor_list = ctf.sensor.index.meg_ref(:,new_sensor_list)';
coefs_list = fread(fid,MAX_BALANCING,'double');
% clean-up the coefs_list
coefs_list = coefs_list(1:numberCoefs,:)';
% allocate the coefficient parameters into the ctf struct
ctf.res4.sensorCoef(i).sensorName = sensorName;
ctf.res4.sensorCoef(i).coefType = coefType;
ctf.res4.sensorCoef(i).coefRec.numberCoefs = numberCoefs;
ctf.res4.sensorCoef(i).coefRec.sensor_list = sensor_list;
ctf.res4.sensorCoef(i).coefRec.coefs_list = coefs_list;
% DLW:
% This is a brainstorm variable, note the use of coefType
% Not clear why this is checked and allocated as such
coefType = find( hex2dec(hexadef) == coefType );
if coefType,
CoefInfo{sensorIndex,coefType-1}.numberCoefs = numberCoefs;
CoefInfo{sensorIndex,coefType-1}.sensor_list = sensor_list;
CoefInfo{sensorIndex,coefType-1}.coefs = coefs_list;
end
end
% Channel Gains
gain_chan = zeros(size(ctf.setup.number_channels,1),1);
gain_chan(ctf.sensor.index.meg_sens) = ([ctf.sensor.info(ctf.sensor.index.meg_sens).proper_gain]'.*[ctf.sensor.info(ctf.sensor.index.meg_sens).q_gain]');
gain_chan(ctf.sensor.index.meg_ref) = ([ctf.sensor.info(ctf.sensor.index.meg_ref).proper_gain]'.*[ctf.sensor.info(ctf.sensor.index.meg_ref).q_gain]');
% gain_chan(ieegsens) = 1./([SensorRes(ieegsens).qGain]'*1e-6);
% gain_chan(ieegsens) = 1./([SensorRes(ieegsens).qGain]');
% gain_chan(iothersens) = ([SensorRes(iothersens).qGain]'); % Don't know exactly which gain to apply here
% Calculus of the matrix for nth-order gradient correction
% Coefficients for unused reference channels are weigthed by zeros in
% the correction matrix.
Gcoef = zeros(length(ctf.sensor.index.meg_sens),length(min(ctf.sensor.index.meg_ref):max(ctf.sensor.index.meg_ref)));
grad_order_no = 3*ones(306,1);
for k = 1:length(ctf.sensor.index.meg_sens)
% Reference coils for channel k
if grad_order_no(ctf.sensor.index.meg_sens(k)) == 0
%Data is saved as RAW
%Save 3rd order gradient sensor-list for subsequent correction if requested later by the user
[refs] = (CoefInfo{ctf.sensor.index.meg_sens(k),3}.sensor_list);
Gcoef(k,refs-min(ctf.sensor.index.meg_ref)+1) = CoefInfo{ctf.sensor.index.meg_sens(k),3}.coefs ...
.* gain_chan(refs)'/gain_chan(ctf.sensor.index.meg_sens(k));
else
[refs] = (CoefInfo{ctf.sensor.index.meg_sens(k),grad_order_no(ctf.sensor.index.meg_sens(k))}.sensor_list);
Gcoef(k,refs-min(ctf.sensor.index.meg_ref)+1) = CoefInfo{ctf.sensor.index.meg_sens(k),grad_order_no(ctf.sensor.index.meg_sens(k))}.coefs ...
.* gain_chan(refs)/gain_chan(ctf.sensor.index.meg_sens(k));
end
ctf.sensor.info(ctf.sensor.index.meg_sens(k)).Gcoef = Gcoef(k,:);
end
end %% end COEF block
fclose(fid);
t = toc; fprintf('...done (%6.2f sec)\n\n',t);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% -------------------------------------------------------
function res4name = findres4file( folder )
% find file name if truncated or with uppercase extension
% added by Arnaud Delorme June 15, 2004
res4name = dir([ folder filesep '*.res4' ]);
if isempty(res4name)
res4name = dir([ folder filesep '*.RES4' ]);
end
if isempty(res4name)
error('No file with extension .res4 or .RES4 in selected folder');
else
res4name = [ folder filesep res4name(1).name ];
end;
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% -------------------------------------------------------
function sensorName = parse_sensor_label(temp)
% sensorName = parse_sensor_label(temp)
% parse sensor label names
temp(temp>127) = 0;
temp(temp<0) = 0;
temp = strtok(temp,char(0));
temp = strtok(temp,'-');
sensorName = char(temp)';
return