-
Notifications
You must be signed in to change notification settings - Fork 4
/
pop_groupSIFT_runSiftBatch.m
588 lines (473 loc) · 24.4 KB
/
pop_groupSIFT_runSiftBatch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
% pop_groupSIFT_runSiftBatch(varargin)
%
% History
% 06/24/2020 Makoto. Supporting resting-state analysis.
% 05/10/2020 Makoto. 'rectwin' selected for 300-ms sliding window analysis.
% 02/20/2020 Makoto. Used.
% 02/05/2020 Makoto. Used.
% 12/09/2019 Makoto. Updated.
% 01/30/2018 Makoto. Modified.
% Copyright (C) 2016, Makoto Miyakoshi ([email protected]) , SCCN,INC,UCSD
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function varargout = pop_groupSIFT_runSiftBatch(varargin)
% POP_GROUPSIFT_RUNSIFTBATCH MATLAB code for pop_groupSIFT_runSiftBatch.fig
% POP_GROUPSIFT_RUNSIFTBATCH, by itself, creates a new POP_GROUPSIFT_RUNSIFTBATCH or raises the existing
% singleton*.
%
% H = POP_GROUPSIFT_RUNSIFTBATCH returns the handle to a new POP_GROUPSIFT_RUNSIFTBATCH or the handle to
% the existing singleton*.
%
% POP_GROUPSIFT_RUNSIFTBATCH('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in POP_GROUPSIFT_RUNSIFTBATCH.M with the given input arguments.
%
% POP_GROUPSIFT_RUNSIFTBATCH('Property','Value',...) creates a new POP_GROUPSIFT_RUNSIFTBATCH or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before pop_groupSIFT_runSiftBatch_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to pop_groupSIFT_runSiftBatch_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help pop_groupSIFT_runSiftBatch
% Last Modified by GUIDE v2.5 24-Jun-2020 17:14:50
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @pop_groupSIFT_runSiftBatch_OpeningFcn, ...
'gui_OutputFcn', @pop_groupSIFT_runSiftBatch_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before pop_groupSIFT_runSiftBatch is made visible.
function pop_groupSIFT_runSiftBatch_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to pop_groupSIFT_runSiftBatch (see VARARGIN)
% Choose default command line output for pop_groupSIFT_runSiftBatch
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes pop_groupSIFT_runSiftBatch wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = pop_groupSIFT_runSiftBatch_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function windowLengthEdit_Callback(hObject, eventdata, handles)
% hObject handle to windowLengthEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of windowLengthEdit as text
% str2num(get(hObject,'String')) returns contents of windowLengthEdit as a double
% --- Executes during object creation, after setting all properties.
function windowLengthEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to windowLengthEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function windowStepSizeEdit_Callback(hObject, eventdata, handles)
% hObject handle to windowStepSizeEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of windowStepSizeEdit as text
% str2num(get(hObject,'String')) returns contents of windowStepSizeEdit as a double
% --- Executes during object creation, after setting all properties.
function windowStepSizeEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to windowStepSizeEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function freqRangeEdit_Callback(hObject, eventdata, handles)
% hObject handle to freqRangeEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of freqRangeEdit as text
% str2num(get(hObject,'String')) returns contents of freqRangeEdit as a double
% --- Executes during object creation, after setting all properties.
function freqRangeEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to freqRangeEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function freqBinEdit_Callback(hObject, eventdata, handles)
% hObject handle to freqBinEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of freqBinEdit as text
% str2num(get(hObject,'String')) returns contents of freqBinEdit as a double
% --- Executes during object creation, after setting all properties.
function freqBinEdit_CreateFcn(hObject, eventdata, handles)
% hObject handle to freqBinEdit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in windowingPopupmenu.
function windowingPopupmenu_Callback(hObject, eventdata, handles)
% hObject handle to windowingPopupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns windowingPopupmenu contents as cell array
% contents{get(hObject,'Value')} returns selected item from windowingPopupmenu
% --- Executes during object creation, after setting all properties.
function windowingPopupmenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to windowingPopupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in optimumOrderAlgoPopupmenu.
function optimumOrderAlgoPopupmenu_Callback(hObject, eventdata, handles)
% hObject handle to optimumOrderAlgoPopupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns optimumOrderAlgoPopupmenu contents as cell array
% contents{get(hObject,'Value')} returns selected item from optimumOrderAlgoPopupmenu
% --- Executes during object creation, after setting all properties.
function optimumOrderAlgoPopupmenu_CreateFcn(hObject, eventdata, handles)
% hObject handle to optimumOrderAlgoPopupmenu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in singleWindowCheckbox.
function singleWindowCheckbox_Callback(hObject, eventdata, handles)
% hObject handle to singleWindowCheckbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
switch get(handles.singleWindowCheckbox, 'Value')
case 0
set(handles.windowLengthEdit, 'Enable', 'on')
set(handles.windowStepSizeEdit, 'Enable', 'on')
case 1
set(handles.windowLengthEdit, 'Enable', 'off')
set(handles.windowStepSizeEdit, 'Enable', 'off')
end
% --- Executes on button press in selectFilesButton.
function selectFilesButton_Callback(hObject, eventdata, handles)
% hObject handle to selectFilesButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Obtain multiple .set files
[allFiles, workingFolder] = uigetfile('*.set', 'MultiSelect', 'on');
if ~any(workingFolder)
disp('Cancelled.')
return
end
% Convert char to cell if n = 1.
if ischar(allFiles)
subjName = allFiles;
clear allFiles
allFiles{1,1} = subjName;
end
% Display process start
disp(sprintf('\n'))
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp('%%% ''1.Run SIFT batch'' started. %%%')
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp(sprintf('\n'))
% Move to the working folder
cd(workingFolder)
% Start the batch
for setIdx = 1:length(allFiles)
tic
loadName = allFiles{setIdx};
dataName = loadName(1:end-4);
%% STEP1: load data
EEG = pop_loadset('filename', loadName, 'filepath', workingFolder);
%% STEP 2: Define key Processing Parameters
Components = 1:size(EEG.icaweights); % these are the components/channels to which we'll fit our multivariate model
switch get(handles.singleWindowCheckbox, 'Value')
case 0
WindowLengthSec = str2num(get(handles.windowLengthEdit, 'String')); % sliding window length in seconds
WindowStepSizeSec = str2num(get(handles.windowStepSizeEdit, 'String')); % sliding window step size in seconds
case 1
WindowLengthSec = EEG.xmax;
WindowStepSizeSec = 1;
end
NewSamplingRate = []; % new sampling rate (if downsampling)
EpochTimeRange = [EEG.xmin EEG.xmax]; % this is the time range (in seconds) to analyze (relative to event at t=0)
GUI_MODE = 'nogui'; % whether or not to show the Graphical User Interfaces. Can be 'nogui' or anything else (to show the gui)
VERBOSITY_LEVEL = 1; % Verbosity Level (0=no/minimal output, 2=graphical output)
freqEdges = str2num(get(handles.freqRangeEdit, 'String'));
% This is a modified version of log scale by Nattapong and Makoto (03/04/2017)
deviationFromLog = 5;
freqs = logspace(log10(freqEdges(1)+deviationFromLog), log10(freqEdges(2)+deviationFromLog), str2num(get(handles.freqBinEdit, 'String')))-deviationFromLog;
%freqs = 10:50;
%% STEP 3: Pre-process the data
disp('===================================')
disp('PRE-PROCESSING DATA');
% select time range
EEG = pop_select( EEG,'time',EpochTimeRange );
% convert list of components to cell array of strings
ComponentNames = strtrim(cellstr(num2str(Components')));
% apply the command to pre-process the data
EEG = pop_pre_prepData(EEG,GUI_MODE, ...
'VerbosityLevel',VERBOSITY_LEVEL, ...
'SignalType',{'Components'}, ...
'VariableNames',ComponentNames, ...
'NormalizeData', ...
{'verb' 0 ...
'method' {'time' 'ensemble'}}, ...
'Detrend', ...
{'verb' VERBOSITY_LEVEL ...
'method' {'linear'}}, ...
'resetConfigs',true, ...
'badsegments',[], ...
'newtrials',[], ...
'equalizetrials',false);
disp('===================================')
% 'Detrend', ...
% {'verb' VERBOSITY_LEVEL ...
% 'method' {'linear'} ...
% 'piecewise' ...
% {'seglength' 1.00 ...
% 'stepsize' 0.25} ...
% 'plot' false}, ...
%% STEP 4: Identify the optimal model order
disp('===================================')
disp('MODEL ORDER IDENTIFICATION');
% Here we compute various model order selection criteria for varying model
% orders (e.g. 1 to 30) and visualize the results
% Obtain user input for windowing type.
switch get(handles.windowingPopupmenu, 'Value')
case 1
windowingType = 'rectwin';
case 2
windowingType = 'hamming';
case 3
windowingType = 'blackmanharris';
end
% compute model order selection criteria...
EEG = pop_est_selModelOrder(EEG,GUI_MODE, ...
'modelingApproach', ...
{'Segmentation VAR' ...
'algorithm' {'Vieira-Morf'} ...
'winStartIdx' [] ...
'winlen' WindowLengthSec ...
'winstep' WindowStepSizeSec ...
'taperfcn' windowingType ... % 'rectwin' 'hamming' 'blackmanharris'
'epochTimeLims' [] ...
'prctWinToSample' 100 ...
'normalize' {'method' {'time' 'ensemble'}} ...
'detrend' {'method' 'linear'} ...
'verb' VERBOSITY_LEVEL}, ...
'morderRange',[1 20] , ...
'downdate',true, ...
'runPll',[], ...
'icselector',{'sbc' 'aic' 'fpe' 'hq'}, ...
'winStartIdx',[], ...
'epochTimeLims',[], ...
'prctWinToSample',100, ...
'plot', [], ...
'verb', VERBOSITY_LEVEL);
% To plot the results, use this:
% handles = vis_plotOrderCriteria(EEG.CAT.IC,{'conditions' [] ...
% 'icselector' {'sbc','aic','fpe','hq'} ...
% 'minimizer' {'min'} ...
% 'prclim' 90});
% If you want to save this figure you can uncomment the following lines:
%
% for i=1:length(handles)
% saveas(handles(i),sprintf('orderResults%d.fig',i));
% end
% close(handles);
% Finally, we can automatically select the model order which minimizes one
% of the criteria (or you can set this manually based on above figure)
% Obtain user input for windowing type.
switch get(handles.optimumOrderAlgoPopupmenu, 'Value')
case 1
ModelOrder = ceil(mean(EEG.CAT.IC.hq.popt));
case 2
ModelOrder = ceil(mean(EEG.CAT.IC.hq.pelbow));
end
% As an alternative to using the minimum of the selection criteria over
% model order, you can find the "elbow" in the plot of model order versus
% selection criterion value. This is useful in cases where the selection
% criterion does not have a clear minimum. For example, the lines below
% plot and select the elbow location (averaged across windows) for the AIC
% criterion
%
% vis_plotOrderCriteria(EEG(1).CAT.IC,{},{},'elbow');
% ModelOrder = ceil(mean(EEG(1).CAT.IC.aic.pelbow));
disp('===================================')
%% STEP 5: Fit the VAR model
disp('===================================')
disp('MODEL FITTING');
% Here we can check that our selected parameters make sense
fprintf('===================================================\n');
fprintf('MVAR PARAMETER SUMMARY FOR CONDITION: %s\n',EEG.condition);
fprintf('===================================================\n');
est_dispMVARParamCheck(EEG,struct('morder', ModelOrder', 'winlen', WindowLengthSec, 'winstep', WindowStepSizeSec,'verb', VERBOSITY_LEVEL));
% Once we have identified our optimal model order, we can fit our VAR model.
% Fit a model using the options specifed for model order selection (STEP 4)
EEG = pop_est_fitMVAR(EEG,GUI_MODE, ...
EEG.CAT.configs.est_selModelOrder.modelingApproach, ...
'ModelOrder',ModelOrder);
% Note that EEG.CAT.MODEL now contains the model structure with
% coefficients (in MODEL.AR), prediction errors (MODEL.PE) and other
% self-evident information
% Alternately, we can fit the VAR parameters using a Kalman filter (see
% doc est_fitMVARKalman for more info on arguments)
%
% EEG.CAT.MODEL = est_fitMVARKalman(EEG,0,'updatecoeff',0.0005,'updatemode',2,'morder',ModelOrder,'verb',2,'downsampleFactor',50);
disp('===================================')
%% STEP 6: Validate the fitted model
disp('===================================')
disp('MODEL VALIDATION');
% Here we assess the quality of the fit of our model w.r.t. the data. This
% step can be slow.
% We can obtain statistics for residual whiteness, percent consistency, and
% model stability ...
[EEG] = pop_est_validateMVAR(EEG,GUI_MODE,...
'checkWhiteness', ...
{'alpha' 0.05 ...
'statcorrection' 'none' ...
'numAcfLags' 50 ...
'whitenessCriteria' {'Ljung-Box' 'ACF' 'Box-Pierce' 'Li-McLeod'} ...
'winStartIdx' [] ...
'prctWinToSample' 100 ...
'verb' 0}, ...
'checkResidualVariance',...
{'alpha' 0.05 ...
'statcorrection' 'none' ...
'numAcfLags' 50 ...
'whitenessCriteria' {} ...
'winStartIdx' [] ...
'prctWinToSample' 100 ...
'verb' 0}, ...
'checkConsistency', ...
{'winStartIdx' [] ...
'prctWinToSample' 100 ...
'Nr' [] ...
'donorm' 0 ...
'nlags' [] ...
'verb' 0}, ...
'checkStability', ...
{'winStartIdx' [] ...
'prctWinToSample' 100 ...
'verb' 0}, ...
'prctWinToSample',100, ...
'winStartIdx',[], ...
'verb',VERBOSITY_LEVEL,...
'plot',false);
% % ... and then plot the results
% handles = [];
% for k=1:length(EEG)
% handles(k) = vis_plotModelValidation(EEG(k).CAT.VALIDATION.whitestats, ...
% EEG(k).CAT.VALIDATION.PC, ...
% EEG(k).CAT.VALIDATION.stability);
% end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The code above has a bug. Use below instead. 01/27/2016 Makoto
% tmpWhitestats = EEG.CAT.VALIDATION.whitestats;
% tmpPCstats = EEG.CAT.VALIDATION.PCstats;
% tmpStabilitystats = EEG.CAT.VALIDATION.stabilitystats;
% EEG.CAT.VALIDATION.whitestats = {};
% EEG.CAT.VALIDATION.PCstats = {};
% EEG.CAT.VALIDATION.stabilitystats = {};
% EEG.CAT.VALIDATION.whitestats{1} = tmpWhitestats;
% EEG.CAT.VALIDATION.PCstats{1} = tmpPCstats;
% EEG.CAT.VALIDATION.stabilitystats{1} = tmpStabilitystats;
%
% vis_plotModelValidation(EEG.CAT.VALIDATION.whitestats, ...
% EEG.CAT.VALIDATION.PCstats, ...
% EEG.CAT.VALIDATION.stabilitystats);
% If you want to save this figure you can uncomment the following lines:
%
% for i=1:length(handles)
% saveas(handles(i),sprintf('validationResults%d.fig',i));
% end
% close(handles);
% To automatically determine whether our model accurately fits the data you
% can write a few lines as follows (replace 'acf' with desired statistic):
%
% if ~all(EEG(1).CAT.VALIDATION.whitestats.acf.w)
% msgbox('Residuals are not completely white!');
% end
disp('===================================')
%% STEP 7: Compute Connectivity
disp('===================================')
disp('CONNECTIVITY ESTIMATION');
% Next we will compute various dynamical quantities, including connectivity,
% from the fitted VAR model. We can compute these for a range of
% frequencies (here 1-40 Hz). See 'doc est_mvarConnectivity' for a complete
% list of available connectivity and spectral estimators.
EEG = pop_est_mvarConnectivity(EEG,GUI_MODE, ...
'connmethods',{'dDTF08' 'RPDC'}, ...
'absvalsq',true, ...
'spectraldecibels',true, ...
'freqs', freqs, ...
'verb',VERBOSITY_LEVEL);
%% STEP 8: Save data
pop_saveset(EEG, 'filename', dataName, 'filepath', workingFolder);
%% STEP 9: Report time lapse
timeLapse = toc;
disp(sprintf('%2.0d/%2.0d subjects done (%0.1d sec lapsed for this one)', setIdx, length(allFiles), round(timeLapse)));
end
% Display process end
disp(sprintf('\n'))
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp('%%% ''1.Run SIFT batch'' finished. %%%')
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp(sprintf('\n'))