-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathbackward_gpu.py
163 lines (142 loc) · 7.1 KB
/
backward_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import matplotlib.pyplot as plt
import torch
import gsplatcu as gsc
import numpy as np
from gsplat.sh_coef import *
from backward_cpu import *
from gsplat.gau_io import *
if __name__ == "__main__":
sh_rest_dim = 45
sh_dim = 3 + sh_rest_dim
gs = get_example_gs()
gs_num = gs.shape[0]
rest_shs = np.random.rand(gs_num, sh_rest_dim)
shs = np.concatenate((gs['sh'], rest_shs), axis=1).astype(np.float64)
# Camera info
tcw = np.array([1.03796196, 0.42017467, 4.67804612])
Rcw = np.array([[0.89699204, 0.06525223, 0.43720409],
[-0.04508268, 0.99739184, -0.05636552],
[-0.43974177, 0.03084909, 0.89759429]]).T
twc = np.linalg.inv(Rcw) @ (-tcw)
width = int(32)
height = int(16)
fx = 16
fy = 16
cx = width/2.
cy = height/2.
image_gt = np.zeros([height, width, 3])
pws = gs['pw'].astype(np.float64)
alphas = gs['alpha'].astype(np.float64)
rots = gs['rot'].astype(np.float64)
scales = gs['scale'].astype(np.float64)
colors = np.zeros([gs_num, 3])
us = np.zeros([gs_num, 2])
pcs = np.zeros([gs_num, 3])
cov3ds = np.zeros([gs_num, 6])
cov2ds = np.zeros([gs_num, 3])
cinv2ds = np.zeros([gs_num, 3])
dpc_dpws = np.zeros([gs_num, 3, 3])
du_dpcs = np.zeros([gs_num, 2, 3])
dcov3d_drots = np.zeros([gs_num, 6, 4])
dcov3d_dscales = np.zeros([gs_num, 6, 3])
dcov2d_dcov3ds = np.zeros([gs_num, 3, 6])
dcov2d_dpcs = np.zeros([gs_num, 3, 3])
dcolor_dshs = np.zeros([gs_num, 1, sh_dim//3])
dcolor_dpws = np.zeros([gs_num, 3, 3])
dcinv2d_dcov2ds = np.zeros([gs_num, 3, 3])
for i in range(gs_num):
pcs[i], dpc_dpws[i] = transform(pws[i], Rcw, tcw, True)
us[i], du_dpcs[i] = project(pcs[i], fx, fy, cx, cy, True)
cov3ds[i], dcov3d_drots[i], dcov3d_dscales[i] = compute_cov_3d(
rots[i], scales[i], True)
cov2ds[i], dcov2d_dcov3ds[i], dcov2d_dpcs[i] = compute_cov_2d(
cov3ds[i], pcs[i], Rcw, fx, fy, True)
colors[i], dcolor_dshs[i], dcolor_dpws[i] = sh2color(
shs[i], pws[i], twc, True)
cinv2ds[i], dcinv2d_dcov2ds[i] = calc_cinv2d(cov2ds[i], True)
image = get_image(alphas, cinv2ds, colors, us, height, width)
loss, dloss_dalphas, dloss_dcinv2ds, dloss_dcolors, dloss_dus = calc_loss(
alphas, cinv2ds, colors, us, image_gt, True)
dloss_dalphas = dloss_dalphas.reshape([gs_num, 1, 1])
dloss_dcinv2ds = dloss_dcinv2ds.reshape([gs_num, 1, 3])
dloss_dcolors = dloss_dcolors.reshape([gs_num, 1, 3])
dloss_dus = dloss_dus.reshape([gs_num, 1, 2])
pws_gpu = torch.from_numpy(pws).type(torch.float32).to('cuda')
rots_gpu = torch.from_numpy(rots).type(torch.float32).to('cuda')
scales_gpu = torch.from_numpy(scales).type(torch.float32).to('cuda')
alphas_gpu = torch.from_numpy(alphas).type(torch.float32).to('cuda')
shs_gpu = torch.from_numpy(shs).type(torch.float32).to('cuda')
Rcw_gpu = torch.from_numpy(Rcw).type(torch.float32).to('cuda')
tcw_gpu = torch.from_numpy(tcw).type(torch.float32).to('cuda')
twc_gpu = torch.from_numpy(twc).type(torch.float32).to('cuda')
us_gpu, pcs_gpu, _, du_dpcs_gpu = gsc.project(
pws_gpu, Rcw_gpu, tcw_gpu, fx, fy, cx, cy, True)
print("%s test us_gpu" % check(us_gpu.cpu().numpy(), us))
print("%s test pcs_gpu" % check(pcs_gpu.cpu().numpy(), pcs))
print("%s test du_dpcs_gpu" % check(du_dpcs_gpu.cpu().numpy(), du_dpcs))
depths_gpu = torch.from_numpy(
np.array([1, 2, 3, 4])).type(torch.float32).to('cuda')
cov3ds_gpu, dcov3d_drots_gpu, dcov3d_dscales_gpu = gsc.computeCov3D(
rots_gpu, scales_gpu, depths_gpu, True)
print("%s test cov3ds_gpu" % check(cov3ds_gpu.cpu().numpy(), cov3ds))
print("%s test dcov3d_drots_gpu" %
check(dcov3d_drots_gpu.cpu().numpy(), dcov3d_drots))
print("%s test dcov3d_dscales_gpu" %
check(dcov3d_dscales_gpu.cpu().numpy(), dcov3d_dscales))
cov2ds_gpu, dcov2d_dcov3ds_gpu, dcov2d_dpcs_gpu = gsc.computeCov2D(
cov3ds_gpu, pcs_gpu, Rcw_gpu, depths_gpu, fx, fy, width, height, True)
print("%s test cov2ds_gpu" % check(cov2ds_gpu.cpu().numpy(), cov2ds))
print("%s test dcov2d_dcov3ds_gpu" %
check(dcov2d_dcov3ds_gpu.cpu().numpy(), dcov2d_dcov3ds))
print("%s test dcov2d_dpcs_gpu" %
check(dcov2d_dpcs_gpu.cpu().numpy(), dcov2d_dpcs))
colors_gpu, dcolor_dshs_gpu, dcolor_dpws_gpu = gsc.sh2Color(
shs_gpu, pws_gpu, twc_gpu, True)
print("%s test colors_gpu" % check(colors_gpu.cpu().numpy(), colors))
print("%s test dcolor_dshs_gpu" %
check(dcolor_dshs_gpu.cpu().numpy(), dcolor_dshs))
print("%s test dcolor_dpws_gpu" %
check(dcolor_dpws_gpu.cpu().numpy(), dcolor_dpws))
cinv2ds_gpu, areas_gpu, dcinv2d_dcov2ds_gpu = gsc.inverseCov2D(
cov2ds_gpu, depths_gpu, True)
print("%s test cinv2d_gpu" % check(cinv2ds_gpu.cpu().numpy(), cinv2ds))
print("%s test dcinv2d_dcov2ds_gpu" %
check(dcinv2d_dcov2ds_gpu.cpu().numpy(), dcinv2d_dcov2ds))
image_gpu, contrib_gpu, final_tau_gpu, patch_range_per_tile_gpu, gsid_per_patch_gpu =\
gsc.splat(height, width, us_gpu, cinv2ds_gpu,
alphas_gpu, depths_gpu, colors_gpu, areas_gpu)
print("%s test image_gpu" %
check(image_gpu.cpu().numpy().transpose([1, 2, 0]), image))
# f, axarr = plt.subplots(1,2)
# axarr[0].imshow(image)
# axarr[1].imshow(image_gpu.cpu().numpy().transpose([1, 2, 0]))
# plt.show()
# exit()
_, dloss_dgammas = get_loss(image, image_gt)
dloss_dgammas_gpu = torch.from_numpy(
dloss_dgammas).type(torch.float32).to('cuda')
dloss_dus_gpu, dloss_dcinv2ds_gpu, dloss_dalphas_gpu, dloss_dcolors_gpu =\
gsc.splatB(height, width, us_gpu, cinv2ds_gpu, alphas_gpu, depths_gpu, colors_gpu,
contrib_gpu, final_tau_gpu, patch_range_per_tile_gpu, gsid_per_patch_gpu, dloss_dgammas_gpu)
dloss_dalphas = dloss_dalphas.reshape([gs_num, 1, 1])
dloss_dcinv2ds = dloss_dcinv2ds.reshape([gs_num, 1, 3])
dloss_dcolors = dloss_dcolors.reshape([gs_num, 1, 3])
dloss_dus = dloss_dus.reshape([gs_num, 1, 2])
print("%s test dloss_dus_gpu" %
check(dloss_dus_gpu.cpu().numpy(), dloss_dus))
print("%s test dloss_dcinv2ds_gpu" %
check(dloss_dcinv2ds_gpu.cpu().numpy(), dloss_dcinv2ds))
print("%s test dloss_dalphas_gpu" %
check(dloss_dalphas_gpu.cpu().numpy(), dloss_dalphas))
print("%s test dloss_dcolors_gpu" %
check(dloss_dcolors_gpu.cpu().numpy(), dloss_dcolors))
dpc_dpws_gpu = Rcw_gpu
dloss_drots_gpu = dloss_dcinv2ds_gpu @ dcinv2d_dcov2ds_gpu @ dcov2d_dcov3ds_gpu @ dcov3d_drots_gpu
dloss_dscales_gpu = dloss_dcinv2ds_gpu @ dcinv2d_dcov2ds_gpu @ dcov2d_dcov3ds_gpu @ dcov3d_dscales_gpu
dloss_dshs_gpu = (dloss_dcolors_gpu.permute(0, 2, 1) @
dcolor_dshs_gpu).permute(0, 2, 1).reshape(gs_num, 1, -1)
dloss_dalphas_gpu = dloss_dalphas_gpu
dloss_dpws_gpu = dloss_dus_gpu @ du_dpcs_gpu @ dpc_dpws_gpu + \
dloss_dcolors_gpu @ dcolor_dpws_gpu + \
dloss_dcinv2ds_gpu @ dcinv2d_dcov2ds_gpu @ dcov2d_dpcs_gpu @ dpc_dpws_gpu
pass