-
Notifications
You must be signed in to change notification settings - Fork 108
/
HaskellLib_H.thy
556 lines (422 loc) · 15.1 KB
/
HaskellLib_H.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* Author: Thomas Sewell
Library routines etc expected by Haskell code.
*)
theory HaskellLib_H
imports
Lib
More_Numeral_Type
Monads.Nondet_VCG
Monads.Nondet_Reader_Option
begin
abbreviation (input) "flip \<equiv> swp"
abbreviation(input) bind_drop :: "('a, 'c) nondet_monad \<Rightarrow> ('a, 'b) nondet_monad
\<Rightarrow> ('a, 'b) nondet_monad" (infixl ">>'_" 60)
where "bind_drop \<equiv> (\<lambda>x y. Nondet_Monad.bind x (K_bind y))"
lemma bind_drop_test:
"foldr bind_drop x (return ()) = sequence_x x"
by (rule ext, simp add: sequence_x_def)
(* If the given monad is deterministic, this function converts
the nondet_monad type into a normal deterministic state monad *)
definition
runState :: "('s, 'a) nondet_monad \<Rightarrow> 's \<Rightarrow> ('a \<times> 's)" where
"runState f s \<equiv> THE x. x \<in> fst (f s)"
definition
"runReaderT \<equiv> id"
abbreviation (input)
"getsJust \<equiv> gets_the"
definition
sassert :: "bool \<Rightarrow> 'a \<Rightarrow> 'a" where
"sassert P \<equiv> if P then id else (\<lambda>x. undefined)"
lemma sassert_cong[fundef_cong]:
"\<lbrakk> P = P'; P' \<Longrightarrow> s = s' \<rbrakk> \<Longrightarrow> sassert P s = sassert P' s'"
apply (simp add: sassert_def)
done
definition
haskell_assert :: "bool \<Rightarrow> unit list \<Rightarrow> ('a, unit) nondet_monad" where
"haskell_assert P L \<equiv> assert P"
definition
haskell_assertE :: "bool \<Rightarrow> unit list \<Rightarrow> ('a, 'e + unit) nondet_monad" where
"haskell_assertE P L \<equiv> assertE P"
declare haskell_assert_def [simp] haskell_assertE_def [simp]
definition
stateAssert :: "('a \<Rightarrow> bool) \<Rightarrow> unit list \<Rightarrow> ('a, unit) nondet_monad" where
"stateAssert P L \<equiv> state_assert P"
definition
haskell_fail :: "unit list \<Rightarrow> ('a, 'b) nondet_monad" where
haskell_fail_def[simp]:
"haskell_fail L \<equiv> fail"
definition
catchError_def[simp]:
"catchError \<equiv> handleE"
definition
"curry1 \<equiv> id"
definition
"curry2 \<equiv> curry"
definition
"curry3 f a b c \<equiv> f (a, b, c)"
definition
"curry4 f a b c d \<equiv> f (a, b, c, d)"
definition
"curry5 f a b c d e \<equiv> f (a, b, c, d, e)"
declare curry1_def[simp] curry2_def[simp]
curry3_def[simp] curry4_def[simp] curry5_def[simp]
definition
"split1 \<equiv> id"
definition
"split2 \<equiv> case_prod"
definition
"split3 f \<equiv> \<lambda>(a, b, c). f a b c"
definition
"split4 f \<equiv> \<lambda>(a, b, c, d). f a b c d"
definition
"split5 f \<equiv> \<lambda>(a, b, c, d, e). f a b c d e"
declare split1_def[simp] split2_def[simp]
lemma split3_simp[simp]: "split3 f (a, b, c) = f a b c"
by (simp add: split3_def)
lemma split4_simp[simp]: "split4 f (a, b, c, d) = f a b c d"
by (simp add: split4_def)
lemma split5_simp[simp]: "split5 f (a, b, c, d, e) = f a b c d e"
by (simp add: split5_def)
definition
"Just \<equiv> Some"
definition
"Nothing \<equiv> None"
definition
"fromJust \<equiv> the"
definition
"isJust x \<equiv> x \<noteq> None"
definition
"tail \<equiv> tl"
definition
"head \<equiv> hd"
definition
error :: "unit list \<Rightarrow> 'a" where
"error \<equiv> \<lambda>x. undefined"
definition
"reverse \<equiv> rev"
definition
"isNothing x \<equiv> x = None"
definition
"maybeApply \<equiv> option_map"
definition
"maybe \<equiv> case_option"
definition
"foldR f init L \<equiv> foldr f L init"
definition
"elem x L \<equiv> x \<in> set L"
definition
"notElem x L \<equiv> x \<notin> set L"
type_synonym ordering = bool
definition
compare :: "('a :: ord) \<Rightarrow> 'a \<Rightarrow> ordering" where
"compare \<equiv> (<)"
primrec
insertBy :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
"insertBy f a [] = [a]"
| "insertBy f a (b # bs) = (if (f a b) then (a # b # bs) else (b # (insertBy f a bs)))"
lemma insertBy_length [simp]:
"length (insertBy f a as) = (1 + length as)"
by (induct as) simp_all
primrec
sortBy :: "('a \<Rightarrow> 'a \<Rightarrow> ordering) \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
"sortBy f [] = []"
| "sortBy f (a # as) = insertBy f a (sortBy f as)"
lemma sortBy_length:
"length (sortBy f as) = length as"
by (induct as) simp_all
definition
"sortH \<equiv> sortBy compare"
definition
"catMaybes \<equiv> (map the) \<circ> (filter isJust)"
definition
"runExceptT \<equiv> id"
declare Just_def[simp] Nothing_def[simp] fromJust_def[simp]
isJust_def[simp] tail_def[simp] head_def[simp]
error_def[simp] reverse_def[simp] isNothing_def[simp]
maybeApply_def[simp] maybe_def[simp]
foldR_def[simp] elem_def[simp] notElem_def[simp]
catMaybes_def[simp] runExceptT_def[simp]
definition
"headM L \<equiv> (case L of (h # t) \<Rightarrow> return h | _ \<Rightarrow> fail)"
definition
"tailM L \<equiv> (case L of (h # t) \<Rightarrow> return t | _ \<Rightarrow> fail)"
axiomatization
typeOf :: "'a \<Rightarrow> unit list"
definition
"either f1 f2 c \<equiv> case c of Inl r1 \<Rightarrow> f1 r1 | Inr r2 \<Rightarrow> f2 r2"
lemma either_simp[simp]: "either = case_sum"
apply (rule ext)+
apply (simp add: either_def)
done
class HS_bit = semiring_bit_operations +
fixes shiftL :: "'a \<Rightarrow> nat \<Rightarrow> 'a"
fixes shiftR :: "'a \<Rightarrow> nat \<Rightarrow> 'a"
fixes bitSize :: "'a \<Rightarrow> nat"
instantiation word :: (len) HS_bit
begin
definition
shiftL_word[simp]: "(shiftL :: 'a::len word \<Rightarrow> nat \<Rightarrow> 'a word) \<equiv> shiftl"
definition
shiftR_word[simp]: "(shiftR :: 'a::len word \<Rightarrow> nat \<Rightarrow> 'a word) \<equiv> shiftr"
definition
bitSize_word[simp]: "(bitSize :: 'a::len word \<Rightarrow> nat) \<equiv> size"
instance ..
end
instantiation nat :: HS_bit
begin
definition
shiftL_nat: "shiftL (x :: nat) n \<equiv> (2 ^ n) * x"
definition
shiftR_nat: "shiftR (x :: nat) n \<equiv> x div (2 ^ n)"
text \<open>bitSize not defined for nat\<close>
instance ..
end
class finiteBit = ring_bit_operations +
fixes finiteBitSize :: "'a \<Rightarrow> nat"
instantiation word :: (len) finiteBit
begin
definition
finiteBitSize_word[simp]: "(finiteBitSize :: 'a::len word \<Rightarrow> nat) \<equiv> size"
instance ..
end
definition bit :: "nat \<Rightarrow> 'a::{one,HS_bit}" where
bit_def[simp]: "bit x \<equiv> shiftL 1 x"
definition
"isAligned x n \<equiv> x && mask n = 0"
class integral = ord +
fixes fromInteger :: "nat \<Rightarrow> 'a"
fixes toInteger :: "'a \<Rightarrow> nat"
assumes integral_inv: "fromInteger \<circ> toInteger = id"
instantiation nat :: integral
begin
definition
fromInteger_nat: "fromInteger \<equiv> id"
definition
toInteger_nat: "toInteger \<equiv> id"
instance
apply (intro_classes)
apply (simp add: toInteger_nat fromInteger_nat)
done
end
instantiation word :: (len) integral
begin
definition
fromInteger_word: "fromInteger \<equiv> of_nat :: nat \<Rightarrow> 'a::len word"
definition
toInteger_word: "toInteger \<equiv> unat"
instance
apply (intro_classes)
apply (rule ext)
apply (simp add: toInteger_word fromInteger_word)
done
end
definition
fromIntegral :: "('a :: integral) \<Rightarrow> ('b :: integral)" where
"fromIntegral \<equiv> fromInteger \<circ> toInteger"
lemma fromIntegral_simp1[simp]: "(fromIntegral :: nat \<Rightarrow> ('a :: len) word) = of_nat"
by (simp add: fromIntegral_def fromInteger_word toInteger_nat)
lemma fromIntegral_simp2[simp]: "fromIntegral = unat"
by (simp add: fromIntegral_def fromInteger_nat toInteger_word)
lemma fromIntegral_simp3[simp]: "fromIntegral = ucast"
unfolding fromIntegral_def fromInteger_word toInteger_word by force
lemma fromIntegral_simp_nat[simp]: "(fromIntegral :: nat \<Rightarrow> nat) = id"
by (simp add: fromIntegral_def fromInteger_nat toInteger_nat)
definition
infix_apply :: "'a \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'c" ("_ `~_~` _" [81, 100, 80] 80) where
infix_apply_def[simp]:
"a `~f~` b \<equiv> f a b"
definition
zip3 :: "'a list \<Rightarrow> 'b list \<Rightarrow> 'c list \<Rightarrow> ('a \<times> 'b \<times> 'c) list" where
"zip3 a b c \<equiv> zip a (zip b c)"
(* avoid even attempting haskell's show class *)
definition
"show" :: "'a \<Rightarrow> unit list" where
"show x \<equiv> []"
lemma show_simp_away[simp]: "S @ show t = S"
by (simp add: show_def)
definition
"andList \<equiv> foldl (\<and>) True"
definition
"orList \<equiv> foldl (\<or>) False"
primrec
mapAccumL :: "('a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'c) \<Rightarrow> 'a \<Rightarrow> 'b list \<Rightarrow> 'a \<times> ('c list)"
where
"mapAccumL f s [] = (s, [])"
| "mapAccumL f s (x#xs) = (
let (s', r) = f s x;
(s'', rs) = mapAccumL f s' xs
in (s'', r#rs)
)"
primrec
untilM :: "('b \<Rightarrow> ('s, 'a option) nondet_monad) \<Rightarrow> 'b list \<Rightarrow> ('s, 'a option) nondet_monad"
where
"untilM f [] = return None"
| "untilM f (x#xs) = do
r \<leftarrow> f x;
case r of
None \<Rightarrow> untilM f xs
| Some res \<Rightarrow> return (Some res)
od"
primrec
untilME :: "('c \<Rightarrow> ('s, ('a + 'b option)) nondet_monad) \<Rightarrow> 'c list \<Rightarrow> ('s, 'a + 'b option) nondet_monad"
where
"untilME f [] = returnOk None"
| "untilME f (x#xs) = doE
r \<leftarrow> f x;
case r of
None \<Rightarrow> untilME f xs
| Some res \<Rightarrow> returnOk (Some res)
odE"
primrec
findM :: "('a \<Rightarrow> ('s, bool) nondet_monad) \<Rightarrow> 'a list \<Rightarrow> ('s, 'a option) nondet_monad"
where
"findM f [] = return None"
| "findM f (x#xs) = do
r \<leftarrow> f x;
if r
then return (Some x)
else findM f xs
od"
primrec
findME :: "('a \<Rightarrow> ('s, ('e + bool)) nondet_monad) \<Rightarrow> 'a list \<Rightarrow> ('s, ('e + 'a option)) nondet_monad"
where
"findME f [] = returnOk None"
| "findME f (x#xs) = doE
r \<leftarrow> f x;
if r
then returnOk (Some x)
else findME f xs
odE"
primrec
tails :: "'a list \<Rightarrow> 'a list list"
where
"tails [] = [[]]"
| "tails (x#xs) = (x#xs)#(tails xs)"
lemma finite_surj_type:
"\<lbrakk> (\<forall>x. \<exists>y. (x :: 'b) = f (y :: 'a)); finite (UNIV :: 'a set) \<rbrakk> \<Longrightarrow> finite (UNIV :: 'b set)"
apply (erule finite_surj)
apply safe
apply (erule allE)
apply safe
apply (erule image_eqI)
apply simp
done
lemma finite_finite[simp]: "finite (s :: ('a :: finite) set)"
by simp
lemma finite_inv_card_less':
"U = (UNIV :: ('a :: finite) set) \<Longrightarrow> (card (U - insert a s) < card (U - s)) = (a \<notin> s)"
apply (case_tac "a \<in> s")
apply (simp_all add: insert_absorb)
apply (subgoal_tac "card s < card U")
apply (simp add: card_Diff_subset)
apply (rule psubset_card_mono)
apply safe
apply simp_all
done
lemma finite_inv_card_less:
"(card (UNIV - insert (a :: ('a :: finite)) s) < card (UNIV - s)) = (a \<notin> s)"
by (simp add: finite_inv_card_less')
definition
"minimum ls \<equiv> Min (set ls)"
definition
"maximum ls \<equiv> Max (set ls)"
primrec (nonexhaustive)
hdCons :: "'a \<Rightarrow> 'a list list \<Rightarrow> 'a list list"
where
"hdCons x (ys # zs) = (x # ys) # zs"
primrec
rangesBy :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list list"
where
"rangesBy f [] = []"
| "rangesBy f (x # xs) =
(case xs of [] \<Rightarrow> [[x]]
| (y # ys) \<Rightarrow> if (f x y) then hdCons x (rangesBy f xs)
else [x] # (rangesBy f xs))"
definition
partition :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<times> 'a list" where
"partition f xs \<equiv> (filter f xs, filter (\<lambda>x. \<not> f x) xs)"
definition
listSubtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"listSubtract xs ys \<equiv> filter (\<lambda>x. x \<in> set ys) xs"
definition
init :: "'a list \<Rightarrow> 'a list" where
"init xs \<equiv> case (length xs) of Suc n \<Rightarrow> take n xs | _ \<Rightarrow> undefined"
primrec
break :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> ('a list \<times> 'a list)"
where
"break f [] = ([], [])"
| "break f (x # xs) =
(if f x
then ([], x # xs)
else (\<lambda>(ys, zs). (x # ys, zs)) (break f xs))"
definition
"uncurry \<equiv> case_prod"
definition
sum :: "'a list \<Rightarrow> 'a::{plus,zero}" where
"sum \<equiv> foldl (+) 0"
definition
"replicateM n m \<equiv> sequence (replicate n m)"
definition
maybeToMonad_def[simp]:
"maybeToMonad \<equiv> assert_opt"
definition
funArray :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)" where
funArray_def[simp]:
"funArray \<equiv> id"
definition
funPartialArray :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a :: enumeration_alt \<times> 'a) \<Rightarrow> ('a \<Rightarrow> 'b)" where
"funPartialArray f xrange \<equiv> \<lambda>x. (if x \<in> set [fst xrange .e. snd xrange] then f x else undefined)"
definition
forM_def[simp]:
"forM xs f \<equiv> mapM f xs"
definition
forM_x_def[simp]:
"forM_x xs f \<equiv> mapM_x f xs"
definition
forME_x_def[simp]:
"forME_x xs f \<equiv> mapME_x f xs"
definition
arrayListUpdate :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<Rightarrow> 'b)" (infixl "aLU" 90)
where
arrayListUpdate_def[simp]:
"arrayListUpdate f l \<equiv> foldl (\<lambda>f p. f(fst p := snd p)) f l"
definition
"genericTake \<equiv> take \<circ> fromIntegral"
definition
"genericLength \<equiv> fromIntegral \<circ> length"
abbreviation
"null == List.null"
syntax (input)
"_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list" ("[_ | __")
lemma "[(x,1) . x \<leftarrow> [0..10]] = [(x,1) | x \<leftarrow> [0..10]]" by (rule refl)
definition ohaskell_fail :: "unit list \<Rightarrow> ('s, 'a) lookup" where
"ohaskell_fail = K ofail"
definition ohaskell_assert :: "bool \<Rightarrow> unit list \<Rightarrow> ('s, unit) lookup" where
"ohaskell_assert P ls \<equiv> if P then oreturn () else ofail"
lemma no_ofail_ohaskell_assert[wp]:
"no_ofail (\<lambda>_. P) (ohaskell_assert P [])"
by (clarsimp simp: no_ofail_def ohaskell_assert_def)
lemma ohaskell_assert_wp[wp]:
"\<lblot>\<lambda>s. Q \<longrightarrow> P () s\<rblot> ohaskell_assert Q [] \<lblot>P\<rblot>"
apply (clarsimp simp: ohaskell_assert_def)
apply (intro conjI; wpsimp)
done
lemma ohaskell_assert_sp:
"\<lblot>P\<rblot> ohaskell_assert Q [] \<lblot>\<lambda>_ s. P s \<and> Q\<rblot>"
apply (clarsimp simp: ohaskell_assert_def)
apply (intro conjI; wpsimp)
done
lemma gets_the_ohaskell_assert:
"gets_the (ohaskell_assert P []) = assert P"
by (clarsimp simp: ohaskell_assert_def split: if_splits)
definition ohaskell_state_assert :: "('s \<Rightarrow> bool) \<Rightarrow> unit list \<Rightarrow> ('s, unit) lookup" where
"ohaskell_state_assert P L \<equiv> ostate_assert P"
lemmas omonad_defs = omonad_defs ohaskell_assert_def ohaskell_state_assert_def ohaskell_fail_def
end