-
Notifications
You must be signed in to change notification settings - Fork 108
/
PackedTypes.thy
1017 lines (846 loc) · 41.1 KB
/
PackedTypes.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory PackedTypes
imports CProof
begin
section \<open>Underlying definitions for the class axioms\<close>
text \<open>field_access / field_update is the identity for packed types\<close>
definition fa_fu_idem :: "'a field_desc \<Rightarrow> nat \<Rightarrow> bool" where
"fa_fu_idem fd n \<equiv>
\<forall>bs bs' v. length bs = n \<longrightarrow> length bs' = n \<longrightarrow> field_access fd (field_update fd bs v) bs' = bs"
(* Is it better to do this or to use a fold over td? This seems easier to use *)
primrec
td_fafu_idem :: "'a field_desc typ_desc \<Rightarrow> bool" and
td_fafu_idem_struct :: "'a field_desc typ_struct \<Rightarrow> bool" and
td_fafu_idem_list :: " ('a field_desc typ_desc, char list) dt_pair list \<Rightarrow> bool" and
td_fafu_idem_pair :: "('a field_desc typ_desc, char list) dt_pair \<Rightarrow> bool"
where
fai0: "td_fafu_idem (TypDesc ts n) = td_fafu_idem_struct ts"
| fai1: "td_fafu_idem_struct (TypScalar n algn d) = fa_fu_idem d n"
| fai2: "td_fafu_idem_struct (TypAggregate ts) = td_fafu_idem_list ts"
| fai3: "td_fafu_idem_list [] = True"
| fai4: "td_fafu_idem_list (x#xs) = (td_fafu_idem_pair x \<and> td_fafu_idem_list xs)"
| fai5: "td_fafu_idem_pair (DTPair x n) = td_fafu_idem x"
lemmas td_fafu_idem_simps = fai0 fai1 fai2 fai3 fai4 fai5
text \<open>field_access is independent of the underlying bytes\<close>
definition fa_heap_indep :: "'a field_desc \<Rightarrow> nat \<Rightarrow> bool" where
"fa_heap_indep fd n \<equiv>
\<forall>bs bs' v. length bs = n \<longrightarrow> length bs' = n \<longrightarrow> field_access fd v bs = field_access fd v bs'"
primrec
td_fa_hi :: "'a field_desc typ_desc \<Rightarrow> bool" and
td_fa_hi_struct :: "'a field_desc typ_struct \<Rightarrow> bool" and
td_fa_hi_list :: "('a field_desc typ_desc, char list) dt_pair list \<Rightarrow> bool" and
td_fa_hi_pair :: "('a field_desc typ_desc, char list) dt_pair \<Rightarrow> bool"
where
fahi0: "td_fa_hi (TypDesc ts n) = td_fa_hi_struct ts"
| fahi1: "td_fa_hi_struct (TypScalar n algn d) = fa_heap_indep d n"
| fahi2: "td_fa_hi_struct (TypAggregate ts) = td_fa_hi_list ts"
| fahi3: "td_fa_hi_list [] = True"
| fahi4: "td_fa_hi_list (x#xs) = (td_fa_hi_pair x \<and> td_fa_hi_list xs)"
| fahi5: "td_fa_hi_pair (DTPair x n) = td_fa_hi x"
lemmas td_fa_hi_simps = fahi0 fahi1 fahi2 fahi3 fahi4 fahi5
section \<open>Lemmas about td_fafu_idem\<close>
lemma field_lookup_td_fafu_idem:
shows "\<And>(s :: 'a field_desc typ_desc) f m n.
\<lbrakk> field_lookup t f m = Some (s, n); td_fafu_idem t \<rbrakk> \<Longrightarrow> td_fafu_idem s"
and "\<And>(s :: 'a field_desc typ_desc) f m n.
\<lbrakk> field_lookup_struct st f m = Some (s, n); td_fafu_idem_struct st \<rbrakk> \<Longrightarrow> td_fafu_idem s"
and "\<And>(s :: 'a field_desc typ_desc) f m n.
\<lbrakk> field_lookup_list ts f m = Some (s, n); td_fafu_idem_list ts \<rbrakk> \<Longrightarrow> td_fafu_idem s"
and "\<And>(s :: 'a field_desc typ_desc) f m n.
\<lbrakk> field_lookup_pair p f m = Some (s, n); td_fafu_idem_pair p \<rbrakk> \<Longrightarrow> td_fafu_idem s"
by (induct t and st and ts and p) (auto split: if_split_asm option.splits)
lemma field_access_update_same:
fixes t :: "'a :: mem_type field_desc typ_desc" and st :: "'a field_desc typ_struct"
shows "\<And>(v :: 'a) bs bs'. \<lbrakk> td_fafu_idem t; wf_fd t; length bs = size_td t; length bs' = size_td t\<rbrakk>
\<Longrightarrow> access_ti t (update_ti t bs v) bs' = bs"
and "\<And>(v :: 'a) bs bs'. \<lbrakk> td_fafu_idem_struct st; wf_fd_struct st; length bs = size_td_struct st; length bs' = size_td_struct st \<rbrakk>
\<Longrightarrow> access_ti_struct st (update_ti_struct st bs v) bs' = bs"
and "\<And>(v :: 'a) bs bs'. \<lbrakk> td_fafu_idem_list ts; wf_fd_list ts; length bs = size_td_list ts; length bs' = size_td_list ts\<rbrakk>
\<Longrightarrow> access_ti_list ts (update_ti_list ts bs v) bs' = bs"
and "\<And>(v :: 'a) bs bs'. \<lbrakk> td_fafu_idem_pair p; wf_fd_pair p; length bs = size_td_pair p; length bs' = size_td_pair p\<rbrakk>
\<Longrightarrow> access_ti_pair p (update_ti_pair p bs v) bs' = bs"
proof (induct t and st and ts and p)
case TypScalar thus ?case by (clarsimp simp: fa_fu_idem_def)
next
case (Cons_typ_desc p' ts' v bs bs')
hence "fu_commutes (update_ti_pair_t p') (update_ti_list_t ts')" by clarsimp
moreover
have "update_ti_pair p' (take (size_td_pair p') bs) = update_ti_pair_t p' (take (size_td_pair p') bs)"
using Cons_typ_desc.prems by (simp add: update_ti_pair_t_def min_ll)
moreover
have "update_ti_list ts' (drop (size_td_pair p') bs) = update_ti_list_t ts' (drop (size_td_pair p') bs)"
using Cons_typ_desc.prems by (simp add: update_ti_list_t_def)
ultimately have updeq:
"(update_ti_pair p' (take (size_td_pair p') bs) (update_ti_list ts' (drop (size_td_pair p') bs) v))
= (update_ti_list ts' (drop (size_td_pair p') bs) (update_ti_pair p' (take (size_td_pair p') bs) v))"
unfolding fu_commutes_def by simp
show ?case using Cons_typ_desc.prems
by (clarsimp simp add: Cons_typ_desc.hyps) (simp add: updeq Cons_typ_desc.hyps)
qed simp+
lemma access_ti_pair_dt_fst:
"access_ti_pair p v bs = access_ti (dt_fst p) v bs"
by (cases p, simp)
lemma size_td_pair_dt_fst:
"size_td_pair p = size_td (dt_fst p)"
by (cases p, simp)
lemma wf_fd_pair_dt_fst:
"wf_fd_pair p = wf_fd (dt_fst p)"
by (cases p, simp)
lemma field_lookup_offset2:
assumes fl: "(field_lookup t f (m + n) = Some (s, q))"
shows "field_lookup t f m = Some (s, q - n)"
proof -
from fl have le: "m + n \<le> q"
by (rule field_lookup_offset_le)
hence "q = (m + n) + (q - (m + n))"
by simp
hence "field_lookup t f (m + n) = Some (s, (m + n) + (q - (m + n)))" using fl by simp
hence "field_lookup t f m = Some (s, m + (q - (m + n)))"
by (rule iffD1 [OF field_lookup_offset'(1)])
thus ?thesis using le by simp
qed
lemma field_lookup_offset2_list:
assumes fl: "(field_lookup_list ts f (m + n) = Some (s, q))"
shows "field_lookup_list ts f m = Some (s, q - n)"
proof -
from fl have le: "m + n \<le> q"
by (rule field_lookup_offset_le)
hence "q = (m + n) + (q - (m + n))"
by simp
hence "field_lookup_list ts f (m + n) = Some (s, (m + n) + (q - (m + n)))" using fl by simp
hence "field_lookup_list ts f m = Some (s, m + (q - (m + n)))"
by (rule iffD1 [OF field_lookup_offset'(3)])
thus ?thesis using le by simp
qed
lemma field_lookup_offset2_pair:
assumes fl: "(field_lookup_pair p f (m + n) = Some (s, q))"
shows "field_lookup_pair p f m = Some (s, q - n)"
proof -
from fl have le: "m + n \<le> q"
by (rule field_lookup_offset_le)
hence "q = (m + n) + (q - (m + n))"
by simp
hence "field_lookup_pair p f (m + n) = Some (s, (m + n) + (q - (m + n)))" using fl by simp
hence "field_lookup_pair p f m = Some (s, m + (q - (m + n)))"
by (rule iffD1 [OF field_lookup_offset'(4)])
thus ?thesis using le by simp
qed
lemma field_lookup_offset_size':
shows "field_lookup t f 0 = Some (t',n) \<Longrightarrow> size_td t' + n \<le> size_td t"
apply(drule td_set_field_lookupD)
apply(erule td_set_offset_size)
done
lemma field_access_update_nth_inner:
shows "\<And>f (s :: 'a :: mem_type field_desc typ_desc) n x v bs bs'.
\<lbrakk> field_lookup t f 0 = Some (s, n); n \<le> x; x < n + size_td s; td_fafu_idem s; wf_fd s; wf_fd t;
length bs = size_td s; length bs' = size_td t \<rbrakk>
\<Longrightarrow> access_ti t (update_ti s bs v) bs' ! x = bs ! (x - n)"
and "\<And>f (s :: 'a :: mem_type field_desc typ_desc) n x v bs bs'.
\<lbrakk>field_lookup_struct st f 0 = Some (s, n); n \<le> x; x < n + size_td s; td_fafu_idem s; wf_fd s; wf_fd_struct st;
length bs = size_td s; length bs' = size_td_struct st \<rbrakk>
\<Longrightarrow> access_ti_struct st (update_ti s bs v) bs' ! x = bs ! (x - n)"
and "\<And>f (s :: 'a :: mem_type field_desc typ_desc) n x v bs bs'.
\<lbrakk>field_lookup_list ts f 0 = Some (s, n); n \<le> x; x < n + size_td s; td_fafu_idem s; wf_fd s; wf_fd_list ts;
length bs = size_td s; length bs' = size_td_list ts\<rbrakk>
\<Longrightarrow> access_ti_list ts (update_ti s bs v) bs' ! x = bs ! (x - n)"
and "\<And>f (s :: 'a :: mem_type field_desc typ_desc) n x v bs bs'.
\<lbrakk>field_lookup_pair p f 0 = Some (s, n); n \<le> x; x < n + size_td s; td_fafu_idem s; wf_fd s; wf_fd_pair p;
length bs = size_td s; length bs' = size_td_pair p\<rbrakk>
\<Longrightarrow> access_ti_pair p (update_ti s bs v) bs' ! x = bs ! (x - n)"
proof (induct t and st and ts and p)
case (TypDesc typ_struct ls f s n x v bs bs')
show ?case
proof (cases "f = []")
case False thus ?thesis using TypDesc by clarsimp
next
case True
thus ?thesis using TypDesc.prems
by (simp add: field_access_update_same)
qed
next
case (Cons_typ_desc p' ts' f s n x v bs bs')
have nlex: "n \<le> x" and xln: "x < n + size_td s"
and lbs: "length bs = size_td s" and lbs': "length bs' = size_td_list (p' # ts')" by fact+
from Cons_typ_desc have wf: "wf_fd (dt_fst p')" and wfts: "wf_fd_list ts'" by (cases p', auto)
{
assume fl: "field_lookup_list ts' f (size_td (dt_fst p')) = Some (s, n)"
hence mlt: "size_td (dt_fst p') \<le> n"
by (rule field_lookup_offset_le)
hence "size_td (dt_fst p') \<le> x"
by (rule order_trans) fact
hence ?case using wf lbs lbs'
proof (simp add: nth_append length_fa_ti access_ti_pair_dt_fst size_td_pair_dt_fst)
from fl have fl': "field_lookup_list ts' f 0 = Some (s, n - size_td (dt_fst p'))"
by (rule field_lookup_offset2_list [where m = 0, simplified])
show "access_ti_list ts' (update_ti s bs v) (drop (size_td (dt_fst p')) bs') ! (x - size_td (dt_fst p')) = bs ! (x - n)"
using mlt nlex xln lbs lbs' wf wfts \<open>td_fafu_idem s\<close> \<open>wf_fd s\<close>
by (simp add: Cons_typ_desc.hyps(2) [OF fl'] size_td_pair_dt_fst)
qed
}
moreover
{
note ih = Cons_typ_desc.hyps(1)[simplified access_ti_pair_dt_fst wf_fd_pair_dt_fst]
assume fl: "field_lookup_pair p' f 0 = Some (s, n)"
hence "x < size_td (dt_fst p')"
apply (cases p')
apply (simp split: if_split_asm)
apply (drule field_lookup_offset_size')
apply (rule order_less_le_trans [OF xln])
apply simp
done
hence ?case using wf lbs lbs' nlex xln wf wfts \<open>td_fafu_idem s\<close> \<open>wf_fd s\<close>
by (simp add: nth_append length_fa_ti access_ti_pair_dt_fst size_td_pair_dt_fst ih[OF fl])
}
ultimately show ?case using \<open>field_lookup_list (p' # ts') f 0 = Some (s, n)\<close> by (simp split: option.splits)
qed (clarsimp split: if_split_asm)+
subsection \<open>td_fa_hi\<close>
(* \<lbrakk> size_of TYPE('a::mem_type) \<le> length h; size_of TYPE('a) \<le> length h' \<rbrakk> \<Longrightarrow> *)
lemma fa_heap_indepD:
"\<lbrakk> fa_heap_indep fd n; length bs = n; length bs' = n \<rbrakk> \<Longrightarrow>
field_access fd v bs = field_access fd v bs'"
unfolding fa_heap_indep_def
apply (drule spec, drule spec, drule spec)
apply (drule (1) mp)
apply (erule (1) mp)
done
(* The simplifier spins on the IHs here, hence the proofs for each case *)
lemma td_fa_hi_heap_independence:
shows "\<And>(v :: 'a :: mem_type) h h'. \<lbrakk> td_fa_hi t; length h = size_td t; length h' = size_td t \<rbrakk>
\<Longrightarrow> access_ti t v h = access_ti t v h'"
and "\<And>(v :: 'a :: mem_type) h h'. \<lbrakk> td_fa_hi_struct st; length h = size_td_struct st; length h' = size_td_struct st\<rbrakk>
\<Longrightarrow> access_ti_struct st v h = access_ti_struct st v h'"
and "\<And>(v :: 'a :: mem_type) h h'. \<lbrakk> td_fa_hi_list ts; length h = size_td_list ts; length h' = size_td_list ts \<rbrakk>
\<Longrightarrow> access_ti_list ts v h = access_ti_list ts v h'"
and "\<And>(v :: 'a :: mem_type) h h'. \<lbrakk> td_fa_hi_pair p; length h = size_td_pair p; length h' = size_td_pair p \<rbrakk>
\<Longrightarrow> access_ti_pair p v h = access_ti_pair p v h'"
proof (induct t and st and ts and p)
case TypDesc
from TypDesc.prems show ?case
by (simp) (erule (2) TypDesc.hyps)
next
case TypScalar
from TypScalar.prems show ?case
by simp (erule (2) fa_heap_indepD)
next
case TypAggregate
from TypAggregate.prems show ?case
by (simp) (erule (2) TypAggregate.hyps)
next
case Nil_typ_desc thus ?case by simp
next
case Cons_typ_desc
from Cons_typ_desc.prems show ?case
apply simp
apply (erule conjE)
apply (rule arg_cong2 [where f = "(@)"])
apply (erule Cons_typ_desc.hyps; simp)
apply (erule Cons_typ_desc.hyps; simp)
done
next
case DTPair_typ_desc
from DTPair_typ_desc.prems show ?case
by simp (erule (2) DTPair_typ_desc.hyps)
qed
section \<open>Simp rules for deriving packed props from the type combinators\<close>
subsection \<open>td_fafu_idem\<close>
lemma td_fafu_idem_final_pad:
"padup (2 ^ align_td t) (size_td t) = 0
\<Longrightarrow> td_fafu_idem (final_pad t) = td_fafu_idem t"
unfolding final_pad_def
by (clarsimp simp add: padup_def Let_def)
lemma td_fafu_idem_ti_typ_pad_combine:
fixes t :: "'a :: c_type itself" and s :: "'b :: c_type field_desc typ_desc"
assumes pad: "padup (align_of TYPE('a)) (size_td s) = 0"
shows "td_fafu_idem (ti_typ_pad_combine t xf xfu nm s) = td_fafu_idem (ti_typ_combine t xf xfu nm s)"
unfolding ti_typ_pad_combine_def using pad
by (clarsimp simp: Let_def)
lemma td_fafu_idem_list_append:
fixes xs :: "'a :: c_type field_desc typ_pair list"
shows "td_fafu_idem_list (xs @ ys) = (td_fafu_idem_list xs \<and> td_fafu_idem_list ys)"
by (induct xs) simp+
lemma td_fafu_idem_extend_ti:
fixes t :: "'a :: c_type field_desc typ_desc"
assumes as: "td_fafu_idem s"
and at: "td_fafu_idem t"
shows "td_fafu_idem (extend_ti s t nm)" using as at
by (cases s, rename_tac typ_struct xs)
(case_tac typ_struct; simp add: td_fafu_idem_list_append)
lemma fd_cons_access_updateD:
"\<lbrakk> fd_cons_access_update d n; length bs = n; length bs' = n\<rbrakk> \<Longrightarrow>
field_access d (field_update d bs v) bs' = field_access d (field_update d bs v') bs'"
unfolding fd_cons_access_update_def by clarsimp
lemma fa_fu_idem_update_desc:
fixes a :: "'a field_desc"
assumes fg: "fg_cons xf xfu"
and fd: "fd_cons_struct (TypScalar n n' a)"
shows "fa_fu_idem (update_desc xf xfu a) n = fa_fu_idem a n"
proof
assume asm: "fa_fu_idem (update_desc xf xfu a) n"
let ?fu = "\<lambda>bs. if length bs = n then field_update a bs else id"
let ?a' = "\<lparr> field_access = field_access a, field_update = ?fu \<rparr>"
show "fa_fu_idem a n"
unfolding fa_fu_idem_def
proof (intro impI conjI allI)
fix bs :: "byte list" and bs' :: "byte list" and v
assume l: "length bs = n" and l': "length bs' = n"
hence "(\<forall>v. field_access a (field_update a bs (xf v)) bs' = bs)
= (\<forall>v. field_access a (?fu bs (xf v)) bs' = bs)" by simp
also have "\<dots> = (\<forall>v. field_access a (field_update a bs v) bs' = bs)" using fd
apply -
apply (rule iffI)
apply (rule allI)
apply (subst (asm) fd_cons_access_updateD [OF _ l l', where d = ?a', simplified])
apply (simp add: fd_cons_struct_def fd_cons_desc_def)
apply (fastforce simp: l l')
apply (fastforce simp: l l')
done
finally show "field_access a (field_update a bs v) bs' = bs" using asm fg l l'
by (clarsimp simp add: update_desc_def fa_fu_idem_def fg_cons_def)
qed
next
assume "fa_fu_idem a n"
thus "fa_fu_idem (update_desc xf xfu a) n"
unfolding fa_fu_idem_def update_desc_def using fg
by (clarsimp simp add: update_desc_def fa_fu_idem_def fg_cons_def)
qed
lemma td_fafu_idem_map_td_update_desc:
assumes fg: "fg_cons xf xfu"
shows "wf_fd t \<Longrightarrow> td_fafu_idem (map_td (\<lambda>_ _. update_desc xf xfu) t) = td_fafu_idem t"
and "wf_fd_struct st \<Longrightarrow> td_fafu_idem_struct (map_td_struct (\<lambda>_ _. update_desc xf xfu) st) = td_fafu_idem_struct st"
and "wf_fd_list ts \<Longrightarrow> td_fafu_idem_list (map_td_list (\<lambda>_ _. update_desc xf xfu) ts) = td_fafu_idem_list ts"
and "wf_fd_pair p \<Longrightarrow> td_fafu_idem_pair (map_td_pair (\<lambda>_ _. update_desc xf xfu) p) = td_fafu_idem_pair p"
by (induct t and st and ts and p) (auto elim!: fa_fu_idem_update_desc [OF fg])
lemmas td_fafu_idem_adjust_ti = td_fafu_idem_map_td_update_desc(1)[folded adjust_ti_def]
lemma td_fafu_idem_ti_typ_combine:
fixes s :: "'b :: c_type field_desc typ_desc"
assumes fg: "fg_cons xf xfu"
and tda: "td_fafu_idem (typ_info_t TYPE('a :: mem_type))"
and tds: "td_fafu_idem s"
shows "td_fafu_idem (ti_typ_combine TYPE('a :: mem_type) xf xfu nm s)"
unfolding ti_typ_combine_def using tda tds
apply (clarsimp simp: Let_def)
apply (cases s)
apply (rename_tac typ_struct xs)
apply (case_tac typ_struct)
apply simp
apply (subst td_fafu_idem_adjust_ti [OF fg wf_fd], assumption)
apply (simp add: td_fafu_idem_list_append)
apply (subst td_fafu_idem_adjust_ti [OF fg wf_fd], assumption)
done
lemma td_fafu_idem_ptr:
"td_fafu_idem (typ_info_t TYPE('a :: c_type ptr))"
apply (clarsimp simp add: fa_fu_idem_def)
apply (subst word_rsplit_rcat_size)
apply (clarsimp simp add: size_of_def word_size)
apply simp
done
lemma td_fafu_idem_word:
"td_fafu_idem (typ_info_t TYPE('a :: len8 word))"
apply(clarsimp simp: fa_fu_idem_def)
apply (subst word_rsplit_rcat_size)
apply (insert len8_dv8)
apply (clarsimp simp add: size_of_def word_size)
apply (subst dvd_div_mult_self; simp)
apply simp
done
lemma fg_cons_array [simp]:
"n < card (UNIV :: 'b :: finite set) \<Longrightarrow>
fg_cons (\<lambda>x. index x n) (\<lambda>x f. Arrays.update (f :: 'a['b]) n x)"
unfolding fg_cons_def by simp
lemma td_fafu_idem_array_n:
"\<lbrakk> td_fafu_idem (typ_info_t TYPE('a)); n \<le> card (UNIV :: 'b set) \<rbrakk> \<Longrightarrow>
td_fafu_idem (array_tag_n n :: ('a :: mem_type ['b :: finite]) field_desc typ_desc)"
by (induct n; simp add: array_tag_n.simps empty_typ_info_def)
(simp add: td_fafu_idem_ti_typ_combine)
lemma td_fafu_idem_array:
"td_fafu_idem (typ_info_t TYPE('a)) \<Longrightarrow> td_fafu_idem (typ_info_t TYPE('a :: mem_type ['b :: finite]))"
by (clarsimp simp: typ_info_array array_tag_def fa_fu_idem_def td_fafu_idem_array_n)
lemma td_fafu_idem_empty_typ_info:
"td_fafu_idem (empty_typ_info t)"
unfolding empty_typ_info_def
by simp
subsection \<open>td_fa_hi\<close>
(* These are mostly identical to the above --- surely there is something which implies both? *)
lemma td_fa_hi_final_pad:
"padup (2 ^ align_td t) (size_td t) = 0
\<Longrightarrow> td_fa_hi (final_pad t) = td_fa_hi t"
unfolding final_pad_def
by (clarsimp simp add: padup_def Let_def)
lemma td_fa_hi_ti_typ_pad_combine:
fixes t :: "'a :: c_type itself" and s :: "'b :: c_type field_desc typ_desc"
assumes pad: "padup (align_of TYPE('a)) (size_td s) = 0"
shows "td_fa_hi (ti_typ_pad_combine t xf xfu nm s) = td_fa_hi (ti_typ_combine t xf xfu nm s)"
unfolding ti_typ_pad_combine_def using pad
by (clarsimp simp: Let_def)
lemma td_fa_hi_list_append:
fixes xs :: "'a :: c_type field_desc typ_pair list"
shows "td_fa_hi_list (xs @ ys) = (td_fa_hi_list xs \<and> td_fa_hi_list ys)"
by (induct xs) simp+
lemma td_fa_hi_extend_ti:
fixes t :: "'a :: c_type field_desc typ_desc"
assumes as: "td_fa_hi s"
and at: "td_fa_hi t"
shows "td_fa_hi (extend_ti s t nm)" using as at
by (cases s, rename_tac typ_struct xs)
(case_tac typ_struct; simp add: td_fa_hi_list_append)
lemma fa_heap_indep_update_desc:
fixes a :: "'a field_desc"
assumes fg: "fg_cons xf xfu"
and fd: "fd_cons_struct (TypScalar n n' a)"
shows "fa_heap_indep (update_desc xf xfu a) n = fa_heap_indep a n"
proof
assume asm: "fa_heap_indep (update_desc xf xfu a) n"
have xf_xfu: "\<And>v v'. xf (xfu v v') = v" using fg
unfolding fg_cons_def
by simp
show "fa_heap_indep a n"
unfolding fa_heap_indep_def
proof (intro impI conjI allI)
fix bs :: "byte list" and bs' :: "byte list" and v
assume l: "length bs = n" and l': "length bs' = n"
with asm
have "field_access (update_desc xf xfu a) (xfu v undefined) bs =
field_access (update_desc xf xfu a) (xfu v undefined) bs'"
by (rule fa_heap_indepD)
thus "field_access a v bs = field_access a v bs'"
unfolding update_desc_def
by (simp add: xf_xfu)
qed
next
assume asm: "fa_heap_indep a n"
show "fa_heap_indep (update_desc xf xfu a) n"
unfolding fa_heap_indep_def update_desc_def
proof (simp, intro impI conjI allI)
fix bs :: "byte list" and bs' :: "byte list" and v
assume l: "length bs = n" and l': "length bs' = n"
with asm show "field_access a (xf v) bs = field_access a (xf v) bs'"
by (rule fa_heap_indepD)
qed
qed
lemma td_fa_hi_map_td_update_desc:
assumes fg: "fg_cons xf xfu"
shows "wf_fd t \<Longrightarrow> td_fa_hi (map_td (\<lambda>_ _. update_desc xf xfu) t) = td_fa_hi t"
and "wf_fd_struct st \<Longrightarrow> td_fa_hi_struct (map_td_struct (\<lambda>_ _. update_desc xf xfu) st) = td_fa_hi_struct st"
and "wf_fd_list ts \<Longrightarrow> td_fa_hi_list (map_td_list (\<lambda>_ _. update_desc xf xfu) ts) = td_fa_hi_list ts"
and "wf_fd_pair p \<Longrightarrow> td_fa_hi_pair (map_td_pair (\<lambda>_ _. update_desc xf xfu) p) = td_fa_hi_pair p"
by (induct t and st and ts and p) (auto elim!: fa_heap_indep_update_desc [OF fg])
lemmas td_fa_hi_adjust_ti = td_fa_hi_map_td_update_desc(1)[folded adjust_ti_def]
lemma td_fa_hi_ti_typ_combine:
fixes s :: "'b :: c_type field_desc typ_desc"
assumes fg: "fg_cons xf xfu"
and tda: "td_fa_hi (typ_info_t TYPE('a :: mem_type))"
and tds: "td_fa_hi s"
shows "td_fa_hi (ti_typ_combine TYPE('a :: mem_type) xf xfu nm s)"
unfolding ti_typ_combine_def Let_def using tda tds
by (cases s, rename_tac typ_struct xs)
(case_tac typ_struct; simp add: td_fa_hi_list_append td_fa_hi_adjust_ti[OF fg wf_fd])
lemma td_fa_hi_ptr:
"td_fa_hi (typ_info_t TYPE('a :: c_type ptr))"
by (clarsimp simp add: fa_heap_indep_def)
lemma td_fa_hi_word:
"td_fa_hi (typ_info_t TYPE('a :: len8 word))"
by (clarsimp simp add: fa_heap_indep_def)
lemma td_fa_hi_array_n:
"\<lbrakk>td_fa_hi (typ_info_t TYPE('a)); n \<le> card (UNIV :: 'b set) \<rbrakk> \<Longrightarrow> td_fa_hi (array_tag_n n :: ('a :: mem_type ['b :: finite]) field_desc typ_desc)"
by (induct n; simp add: array_tag_n.simps empty_typ_info_def td_fa_hi_ti_typ_combine)
lemma td_fa_hi_array:
"td_fa_hi (typ_info_t TYPE('a)) \<Longrightarrow> td_fa_hi (typ_info_t TYPE('a :: mem_type ['b :: finite]))"
by (clarsimp simp add: typ_info_array array_tag_def fa_fu_idem_def td_fa_hi_array_n)
lemma td_fa_hi_empty_typ_info:
"td_fa_hi (empty_typ_info t)"
unfolding empty_typ_info_def
by simp
section \<open>The type class and simp sets\<close>
text \<open>Packed types, with no padding, have the defining property that
access is invariant under substitution of the underlying heap and
access/update is the identity\<close>
class packed_type = mem_type +
assumes td_fafu_idem: "td_fafu_idem (typ_info_t TYPE('a::c_type))"
assumes td_fa_hi: "td_fa_hi (typ_info_t TYPE('a::c_type))"
lemmas td_fafu_idem_intro_simps =
\<comment> \<open>Axioms\<close>
td_fafu_idem
\<comment> \<open>Combinators\<close>
td_fafu_idem_final_pad td_fafu_idem_ti_typ_pad_combine td_fafu_idem_ti_typ_combine td_fafu_idem_empty_typ_info
\<comment> \<open>Constructors\<close>
td_fafu_idem_ptr td_fafu_idem_word td_fafu_idem_array
lemmas td_fa_hi_intro_simps =
\<comment> \<open>Axioms\<close>
td_fa_hi
\<comment> \<open>Combinators\<close>
td_fa_hi_final_pad td_fa_hi_ti_typ_pad_combine td_fa_hi_ti_typ_combine td_fa_hi_empty_typ_info
\<comment> \<open>Constructors\<close>
td_fa_hi_ptr td_fa_hi_word td_fa_hi_array
lemma align_td_array':
"align_td (typ_info_t TYPE('a :: c_type['b :: finite])) = align_td (typ_info_t TYPE('a))"
by (simp add: typ_info_array array_tag_def align_td_array_tag)
lemmas packed_type_intro_simps =
td_fafu_idem_intro_simps td_fa_hi_intro_simps align_td_array' size_td_simps size_td_array
lemma access_ti_append':
"\<And>list.
access_ti_list (xs @ ys) t list =
access_ti_list xs t (take (size_td_list xs) list) @
access_ti_list ys t (drop (size_td_list xs) list)"
proof(induct xs)
case Nil show ?case by simp
next
case (Cons x xs) thus ?case by (simp add: min_def ac_simps drop_take)
qed
section \<open>Instances\<close>
text \<open>Words (of multiple of 8 size) are packed\<close>
instantiation word :: (len8) packed_type
begin
instance
by (intro_classes; rule td_fafu_idem_word td_fa_hi_word)
end
text \<open>Pointers are always packed\<close>
instantiation ptr :: (c_type)packed_type
begin
instance
by (intro_classes; simp add: fa_fu_idem_def word_rsplit_rcat_size word_size fa_heap_indep_def)
end
text \<open>Arrays of packed types are in turn packed\<close>
class array_outer_packed = packed_type + array_outer_max_size
class array_inner_packed = array_outer_packed + array_inner_max_size
instance word :: (len8)array_outer_packed ..
instance word :: (len8)array_inner_packed ..
instance array :: (array_outer_packed, array_max_count) packed_type
by (intro_classes; simp add: td_fafu_idem_intro_simps td_fa_hi_intro_simps)
instance array :: (array_inner_packed, array_max_count) array_outer_packed ..
section \<open>Theorems about packed types\<close>
subsection \<open>td_fa_hi\<close>
lemma heap_independence:
"\<lbrakk>length h = size_of TYPE('a :: packed_type); length h' = size_of TYPE('a) \<rbrakk>
\<Longrightarrow> access_ti (typ_info_t TYPE('a)) v h = access_ti (typ_info_t TYPE('a)) v h'"
by (rule td_fa_hi_heap_independence(1)[OF td_fa_hi], simp_all add: size_of_def)
theorem packed_heap_update_collapse:
fixes u::"'a::packed_type"
fixes v::"'a"
shows "heap_update p v (heap_update p u h) = heap_update p v h"
unfolding heap_update_def
apply(rule ext)
apply(case_tac "x \<in> {ptr_val p..+size_of TYPE('a)}")
apply(simp add: heap_update_mem_same_point)
apply(simp add:to_bytes_def)
apply(subst heap_independence, simp)
prefer 2
apply(rule refl)
apply(simp)
apply(simp add: heap_update_nmem_same)
done
lemma packed_heap_update_collapse_hrs:
fixes p :: "'a :: packed_type ptr"
shows "hrs_mem_update (heap_update p v) (hrs_mem_update (heap_update p v') hp) =
hrs_mem_update (heap_update p v) hp"
unfolding hrs_mem_update_def
by (simp add: split_def packed_heap_update_collapse)
subsection \<open>td_fafu_idem\<close>
lemma order_leE:
fixes x :: "'a :: order"
shows "\<lbrakk> x \<le> y; x = y \<Longrightarrow> P; x < y \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
by (auto simp: order_le_less)
lemma of_nat_mono_maybe_le:
shows "\<lbrakk>X < 2 ^ len_of TYPE('a); Y \<le> X\<rbrakk> \<Longrightarrow> (of_nat Y :: 'a :: len word) \<le> of_nat X"
apply (erule order_leE)
apply simp
apply (rule order_less_imp_le)
apply (erule (1) of_nat_mono_maybe)
done
lemma intvl_le_lower:
fixes x :: "'a :: len word"
shows "\<lbrakk> x \<in> {y..+n}; y \<le> y + of_nat (n - 1); n < 2 ^ len_of TYPE('a) \<rbrakk> \<Longrightarrow> y \<le> x"
apply (drule intvlD)
apply (elim conjE exE)
apply (erule ssubst)
apply (erule word_plus_mono_right2)
apply (rule of_nat_mono_maybe_le)
apply simp
apply simp
done
lemma intvl_less_upper:
fixes x :: "'a :: len word"
shows "\<lbrakk> x \<in> {y..+n}; y \<le> y + of_nat (n - 1); n < 2 ^ len_of TYPE('a) \<rbrakk> \<Longrightarrow> x \<le> y + of_nat (n - 1)"
apply (drule intvlD)
apply (elim conjE exE)
apply (erule ssubst)
apply (rule word_plus_mono_right; assumption?)
apply (rule of_nat_mono_maybe_le; simp)
done
lemma packed_type_access_ti:
fixes v :: "'a :: packed_type"
assumes lbs: "length bs = size_of TYPE('a)"
shows "access_ti (typ_info_t TYPE('a)) v bs = access_ti\<^sub>0 (typ_info_t TYPE('a)) v"
unfolding access_ti\<^sub>0_def
by (rule heap_independence; simp add: lbs size_of_def)
lemma update_ti_update_ti_t:
"length bs = size_td s \<Longrightarrow> update_ti s bs v = update_ti_t s bs v"
unfolding update_ti_t_def by simp
lemma heap_list_nth:
"m < n \<Longrightarrow> heap_list hp n p ! m = hp (p + of_nat m)"
proof (induct m arbitrary: n p)
case (0 n' p')
thus ?case by (cases n', simp_all)
next
case (Suc m' n' p')
show ?case
proof (cases n')
case 0 thus ?thesis using \<open>Suc m' < n'\<close> by simp
next
case (Suc n'')
hence "m' < n''" using \<open>Suc m' < n'\<close> by simp
thus ?thesis using Suc
by (simp add: Suc.hyps ac_simps)
qed
qed
lemma c_guard_field_lvalue:
fixes p :: "'a :: mem_type ptr"
assumes cg: "c_guard p"
and fl: "field_lookup (typ_info_t TYPE('a)) f 0 = Some (t, n)"
and eu: "export_uinfo t = typ_uinfo_t TYPE('b :: mem_type)"
shows "c_guard (Ptr &(p\<rightarrow>f) :: 'b :: mem_type ptr)"
unfolding c_guard_def
proof (rule conjI)
from cg fl eu show "ptr_aligned (Ptr &(p\<rightarrow>f) :: 'b ptr)"
by (rule c_guard_ptr_aligned_fl)
next
from eu have std: "size_td t = size_of TYPE('b)" using fl
by (simp add: export_size_of)
from cg have "c_null_guard p" unfolding c_guard_def ..
thus "c_null_guard (Ptr &(p\<rightarrow>f) :: 'b ptr)" unfolding c_null_guard_def
apply (rule contrapos_nn)
apply (rule subsetD [OF field_tag_sub, OF fl])
apply (simp add: std)
done
qed
lemma c_guard_no_wrap:
fixes p :: "'a :: mem_type ptr"
assumes cgrd: "c_guard p"
shows "ptr_val p \<le> ptr_val p + of_nat (size_of TYPE('a) - 1)"
using cgrd unfolding c_guard_def c_null_guard_def
apply -
apply (erule conjE)
apply (erule contrapos_np)
apply (simp add: intvl_def)
apply (drule word_wrap_of_natD)
apply (erule exE)
apply (rule exI)
apply (simp add: nat_le_Suc_less)
done
theorem packed_heap_super_field_update:
fixes v :: "'a :: packed_type" and p :: "'b :: packed_type ptr"
assumes fl: "field_lookup (typ_info_t TYPE('b)) f 0 = Some (t, n)"
and cgrd: "c_guard p"
and eu: "export_uinfo t = typ_uinfo_t TYPE('a)"
shows "heap_update (Ptr &(p\<rightarrow>f)) v hp = heap_update p (update_ti t (to_bytes_p v) (h_val hp p)) hp"
unfolding heap_update_def to_bytes_def
proof (simp add: packed_type_access_ti, rule ext)
fix x
let ?LHS = "heap_update_list &(p\<rightarrow>f) (to_bytes_p v) hp x"
let ?RHS = "heap_update_list (ptr_val p) (to_bytes_p (update_ti t (to_bytes_p v) (h_val hp p))) hp x"
from cgrd have al: "ptr_val p \<le> ptr_val p + of_nat (size_of TYPE('b) - 1)" by (rule c_guard_no_wrap)
have szb: "size_of TYPE('b) < 2 ^ len_of TYPE(addr_bitsize)"
by (metis len_of_addr_card max_size)
have szt: "n + size_td t \<le> size_of TYPE('b)"
unfolding size_of_def
by (subst add.commute, rule field_lookup_offset_size [OF fl])
moreover have t0: "0 < size_td t" using fl wf_size_desc
by (rule field_lookup_wf_size_desc_gt)
ultimately have szn: "n < size_of TYPE('b)" by simp
from szt have szt1: "n + (size_td t - 1) \<le> size_of TYPE('b)"
by simp
have b0: "0 < size_of (TYPE ('b))" using wf_size_desc
unfolding size_of_def
by (rule wf_size_desc_gt)
have uofn: "unat (of_nat n :: addr_bitsize word) = n" using szn szb
by (metis le_unat_uoi nat_less_le unat_of_nat_len)
from eu have std: "size_td t = size_of TYPE('a)" using fl
by (simp add: export_size_of)
hence "?LHS = (if x \<in> {&(p\<rightarrow>f)..+size_td t} then (to_bytes_p v) ! unat (x - &(p\<rightarrow>f)) else hp x)"
by (simp add: heap_update_mem_same_point heap_update_nmem_same)
also have "... = ?RHS"
proof (simp, intro impI conjI)
assume xin: "x \<in> {&(p\<rightarrow>f)..+size_td t}"
have "to_bytes_p v ! unat (x - &(p\<rightarrow>f)) = to_bytes_p (update_ti t (to_bytes_p v) (h_val hp p)) ! unat (x - ptr_val p)"
proof (simp add: to_bytes_p_def to_bytes_def, subst field_access_update_nth_inner(1)[OF fl, simplified])
have "c_guard (Ptr &(p\<rightarrow>f) :: 'a ptr)" using cgrd fl eu
by (rule c_guard_field_lvalue)
hence pft: "&(p\<rightarrow>f) \<le> &(p\<rightarrow>f) + of_nat (size_td t - 1)"
by (metis c_guard_no_wrap ptr_val.ptr_val_def std)
have szt': "size_td t < 2 ^ len_of TYPE(addr_bitsize)"
by (metis len_of_addr_card max_size std)
have ofn: "of_nat n \<le> x - ptr_val p"
proof (rule le_minus')
from xin show "ptr_val p + of_nat n \<le> x" using pft szt'
unfolding field_lvalue_def field_lookup_offset_eq [OF fl]
by (rule intvl_le_lower)
next
from szb szn have "of_nat n \<le> (of_nat (size_of TYPE('b) - 1) :: addr_bitsize word)"
by (metis One_nat_def of_nat_mono_maybe_le b0 less_imp_diff_less nat_le_Suc_less)
with al show "ptr_val p \<le> ptr_val p + of_nat n"
by (rule word_plus_mono_right2)
qed
thus nlt: "n \<le> unat (x - ptr_val p)"
by (metis uofn word_le_nat_alt)
have "x \<le> ptr_val p + (of_nat n + of_nat (size_td t - 1))" using xin pft szt' t0
unfolding field_lvalue_def field_lookup_offset_eq [OF fl]
by (metis (no_types) add.assoc intvl_less_upper)
moreover have "x \<in> {ptr_val p..+size_of TYPE('b)}" using fl xin
by (rule subsetD [OF field_tag_sub])
ultimately have "x - ptr_val p \<le> (of_nat n + of_nat (size_td t - 1))" using al szb
by (metis add_diff_cancel_left' intvl_le_lower word_diff_ls(4))
moreover have "unat (of_nat n + of_nat (size_td t - 1) :: addr_bitsize word) = n + size_td t - 1"
using t0 order_le_less_trans [OF szt1 szb]
by (metis Nat.add_diff_assoc One_nat_def Suc_leI of_nat_add unat_of_nat_len)
ultimately have "unat (x - ptr_val p) \<le> n + size_td t - 1"
by (simp add: word_le_nat_alt)
thus "unat (x - ptr_val p) < n + size_td t" using t0
by simp
show "td_fafu_idem t"
by (rule field_lookup_td_fafu_idem(1)[OF fl td_fafu_idem])
show "wf_fd t"
by (rule wf_fd_field_lookupD [OF fl wf_fd])
show "length (access_ti (typ_info_t TYPE('a)) v (replicate (size_of TYPE('a)) 0)) = size_td t"
using wf_fd [where 'a = 'a]
by (simp add: length_fa_ti size_of_def std)
show "length (replicate (size_of TYPE('b)) 0) = size_td (typ_info_t TYPE('b))"
by (simp add: size_of_def)
have "unat (x - &(p\<rightarrow>f)) = unat ((x - ptr_val p) - of_nat n)"
by (simp add: field_lvalue_def field_lookup_offset_eq [OF fl])
also have "\<dots> = unat (x - ptr_val p) - n"
by (metis ofn unat_sub uofn)
finally have "unat (x - &(p\<rightarrow>f)) = unat (x - ptr_val p) - n" .
thus "access_ti (typ_info_t TYPE('a)) v (replicate (size_of TYPE('a)) 0) ! unat (x - &(p\<rightarrow>f)) =
access_ti (typ_info_t TYPE('a)) v (replicate (size_of TYPE('a)) 0) ! (unat (x - ptr_val p) - n)"
by simp
qed
thus "to_bytes_p v ! unat (x - &(p\<rightarrow>f)) = ?RHS"
proof (subst heap_update_mem_same_point, simp_all)
show "x \<in> {ptr_val p..+size_of TYPE('b)}" using fl xin
by (rule subsetD [OF field_tag_sub])
qed
next
assume xni: "x \<notin> {&(p\<rightarrow>f)..+size_td t}"
have "?RHS = (if x \<in> {ptr_val p..+size_of TYPE('b)}
then (to_bytes_p (update_ti t (to_bytes_p v) (h_val hp p))) ! unat (x - ptr_val p) else hp x)"
by (simp add: heap_update_mem_same_point heap_update_nmem_same)
also
{
assume xin: "x \<in> {ptr_val p..+size_of TYPE('b)}"
hence "access_ti (typ_info_t TYPE('b))
(update_ti_t t (access_ti (typ_info_t TYPE('a)) v (replicate (size_of TYPE('a)) 0)) (h_val hp p))
(replicate (size_of TYPE('b)) 0) ! unat (x - ptr_val p) = hp x"
proof (subst field_access_update_nth_disjD [OF fl])
have "x - ptr_val p \<le> of_nat (size_of TYPE('b) - 1)"
proof (rule word_diff_ls(4)[where xa=x and x=x for x, simplified])
from xin show "x \<le> of_nat (size_of TYPE('b) - 1) + ptr_val p" using al szb
by (subst add.commute, rule intvl_less_upper)
show "ptr_val p \<le> x" using xin al szb
by (rule intvl_le_lower)
qed
thus unx: "unat (x - ptr_val p) < size_td (typ_info_t TYPE('b))" using szb b0
by (metis (no_types) One_nat_def Suc_leI le_m1_iff_lt of_nat_1 of_nat_diff of_nat_mono_maybe
semiring_1_class.of_nat_0 size_of_def unat_less_helper)
show "unat (x - ptr_val p) < n - 0 \<or> n - 0 + size_td t \<le> unat (x - ptr_val p)" using xin xni
unfolding field_lvalue_def field_lookup_offset_eq [OF fl]
using intvl_cut by auto
show "wf_fd (typ_info_t TYPE('b))" by (rule wf_fd)
(* clag *)
show "length (access_ti (typ_info_t TYPE('a)) v (replicate (size_of TYPE('a)) 0)) = size_td t"
using wf_fd [where 'a = 'a]
by (simp add: length_fa_ti size_of_def std)
show "length (replicate (size_of TYPE('b)) 0) = size_td (typ_info_t TYPE('b))"
by (simp add: size_of_def)
have "heap_list hp (size_td (typ_info_t TYPE('b))) (ptr_val p) ! unat (x - ptr_val p) = hp x"
by (subst heap_list_nth, rule unx) simp
thus "access_ti (typ_info_t TYPE('b)) (h_val hp p) (replicate (size_of TYPE('b)) 0) ! unat (x - ptr_val p) = hp x"
unfolding h_val_def
by (simp add: from_bytes_def update_ti_t_def size_of_def field_access_update_same(1)[OF td_fafu_idem wf_fd])
qed
}
hence "\<dots> = hp x"
by (simp add: to_bytes_p_def to_bytes_def update_ti_update_ti_t length_fa_ti [OF wf_fd] std size_of_def)
finally show "hp x = ?RHS" by simp
qed
finally show "?LHS = ?RHS" .
qed
subsection \<open>Proof automation for packed types\<close>
definition td_packed :: "'a field_desc typ_desc \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
where "td_packed t sz al \<longleftrightarrow>
td_fafu_idem t \<and> td_fa_hi t \<and> aggregate t \<and> size_td t = sz \<and> align_td t = al"
lemma packed_type_class_intro:
"td_packed (typ_info_t TYPE('a::mem_type)) s a
\<Longrightarrow> OFCLASS('a::mem_type, packed_type_class)"
by standard (simp_all add: td_packed_def)
lemma td_packed_final_pad:
"\<lbrakk>td_packed t s a; 2 ^ a dvd s\<rbrakk> \<Longrightarrow> td_packed (final_pad t) s a"
by (simp add: padup_dvd [symmetric] td_packed_def final_pad_def)
lemma td_packed_ti_typ_combine:
"\<lbrakk> td_packed (td::'a::c_type field_desc typ_desc) s a;
align_of TYPE('b::packed_type) dvd s; fg_cons xf xfu \<rbrakk>
\<Longrightarrow> td_packed (ti_typ_combine TYPE('b) xf xfu nm td)
(s + size_td (typ_info_t TYPE('b)))
(max a (align_td (typ_info_t TYPE('b))))"
unfolding td_packed_def
apply safe
apply (rule td_fafu_idem_ti_typ_combine; assumption?)
apply (rule td_fafu_idem)
apply (rule td_fa_hi_ti_typ_combine; assumption?)
apply (rule td_fa_hi)
apply simp
apply (simp only: size_td_lt_ti_typ_combine)
apply (simp only: align_of_ti_typ_combine)
done
lemma td_packed_ti_typ_pad_combine:
"\<lbrakk> td_packed (td::'a::c_type field_desc typ_desc) s a;
align_of TYPE('b::packed_type) dvd s; fg_cons xf xfu \<rbrakk>
\<Longrightarrow> td_packed (ti_typ_pad_combine TYPE('b) xf xfu nm td)
(s + size_td (typ_info_t TYPE('b)))
(max a (align_td (typ_info_t TYPE('b))))"
apply (subgoal_tac "padup (align_of TYPE('b)) (size_td td) = 0")
apply (simp add: ti_typ_pad_combine_def Let_def td_packed_ti_typ_combine)
apply (simp add: align_of_def padup_dvd td_packed_def)
done
lemma td_packed_ti_typ_combine_array:
"\<lbrakk>td_packed (td::'a::c_type field_desc typ_desc) s a;
align_of TYPE('b::packed_type) dvd s; fg_cons xf xfu\<rbrakk>
\<Longrightarrow> td_packed
(ti_typ_combine TYPE('b ['n :: finite]) xf xfu nm td)
(s + size_td (typ_info_t TYPE('b)) * CARD('n))
(max a (align_td (typ_info_t TYPE('b))))"
by (clarsimp simp: ti_typ_combine_def td_packed_def
packed_type_intro_simps td_fafu_idem_extend_ti
td_fa_hi_extend_ti td_fa_hi_adjust_ti
size_td_extend_ti size_of_def
td_fafu_idem_adjust_ti)
lemma td_packed_ti_typ_pad_combine_array:
"\<lbrakk> td_packed (td::'a::c_type field_desc typ_desc) s a;
align_of TYPE('b::packed_type) dvd s; fg_cons xf xfu \<rbrakk>
\<Longrightarrow> td_packed (ti_typ_pad_combine TYPE('b ['n :: finite]) xf xfu nm td)
(s + size_td (typ_info_t TYPE('b)) * CARD('n))
(max a (align_td (typ_info_t TYPE('b))))"
apply (subgoal_tac "padup (align_of TYPE('b['n])) (size_td td) = 0")
apply (simp add: ti_typ_pad_combine_def Let_def)
apply (simp add: td_packed_ti_typ_combine_array)
apply (simp add: align_of_def padup_dvd td_packed_def align_td_array)
done
lemma td_packed_empty_typ_info:
"td_packed (empty_typ_info fn) 0 0"
apply (unfold td_packed_def, safe)