From d359f30921a9f62a0fd299c412ff3f270286fea6 Mon Sep 17 00:00:00 2001 From: slaren Date: Mon, 20 May 2024 01:17:03 +0200 Subject: [PATCH 01/18] llama : remove MPI backend (#7395) --- .devops/nix/package.nix | 1 - .github/workflows/build.yml | 34 ------ CMakeLists.txt | 33 +----- Makefile | 12 -- README.md | 39 ------- ggml-mpi.c | 216 ----------------------------------- ggml-mpi.h | 39 ------- llama.cpp | 48 +------- scripts/LlamaConfig.cmake.in | 5 - 9 files changed, 2 insertions(+), 425 deletions(-) delete mode 100644 ggml-mpi.c delete mode 100644 ggml-mpi.h diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index 1c9633cdf5557..e8d5b0bd92d2c 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -214,7 +214,6 @@ effectiveStdenv.mkDerivation ( (cmakeBool "LLAMA_CUDA" useCuda) (cmakeBool "LLAMA_HIPBLAS" useRocm) (cmakeBool "LLAMA_METAL" useMetalKit) - (cmakeBool "LLAMA_MPI" useMpi) (cmakeBool "LLAMA_VULKAN" useVulkan) (cmakeBool "LLAMA_STATIC" enableStatic) ] diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 53e61b80f7964..7b616281b6f6f 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -306,40 +306,6 @@ jobs: cd build ctest -L main --verbose --timeout 900 - ubuntu-latest-cmake-mpi: - runs-on: ubuntu-latest - - continue-on-error: true - - strategy: - matrix: - mpi_library: [mpich, libopenmpi-dev] - - steps: - - name: Clone - id: checkout - uses: actions/checkout@v4 - - - name: Dependencies - id: depends - run: | - sudo apt-get update - sudo apt-get install build-essential ${{ matrix.mpi_library }} - - - name: Build - id: cmake_build - run: | - mkdir build - cd build - cmake -DLLAMA_MPI=ON .. - cmake --build . --config Release -j $(nproc) - - - name: Test - id: cmake_test - run: | - cd build - ctest -L main --verbose - ubuntu-latest-cmake-rpc: runs-on: ubuntu-latest diff --git a/CMakeLists.txt b/CMakeLists.txt index cbeb2ee37500e..616698c7fe28c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -122,7 +122,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING "llama: metal minimum macOS version") set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)") option(LLAMA_KOMPUTE "llama: use Kompute" OFF) -option(LLAMA_MPI "llama: use MPI" OFF) option(LLAMA_RPC "llama: use RPC" OFF) option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF) option(LLAMA_SYCL "llama: use SYCL" OFF) @@ -466,35 +465,6 @@ if (LLAMA_CUDA) endif() endif() -if (LLAMA_MPI) - cmake_minimum_required(VERSION 3.10) - find_package(MPI) - if (MPI_C_FOUND) - message(STATUS "MPI found") - - set(GGML_HEADERS_MPI ggml-mpi.h) - set(GGML_SOURCES_MPI ggml-mpi.c) - - add_compile_definitions(GGML_USE_MPI) - add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS}) - - if (NOT MSVC) - add_compile_options(-Wno-cast-qual) - endif() - - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES}) - set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS}) - - # Even if you're only using the C header, C++ programs may bring in MPI - # C++ functions, so more linkage is needed - if (MPI_CXX_FOUND) - set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES}) - endif() - else() - message(WARNING "MPI not found") - endif() -endif() - if (LLAMA_RPC) add_compile_definitions(GGML_USE_RPC) @@ -1218,7 +1188,6 @@ add_library(ggml OBJECT ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} - ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} ${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} ${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL} @@ -1306,7 +1275,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h" "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" - "${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}") + "${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") install(TARGETS ggml PUBLIC_HEADER) diff --git a/Makefile b/Makefile index 22d5218565d23..9a26aec507dbc 100644 --- a/Makefile +++ b/Makefile @@ -399,13 +399,6 @@ ifndef LLAMA_NO_ACCELERATE endif endif # LLAMA_NO_ACCELERATE -ifdef LLAMA_MPI - MK_CPPFLAGS += -DGGML_USE_MPI - MK_CFLAGS += -Wno-cast-qual - MK_CXXFLAGS += -Wno-cast-qual - OBJS += ggml-mpi.o -endif # LLAMA_MPI - ifdef LLAMA_OPENBLAS MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas) MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas) @@ -629,11 +622,6 @@ ggml-metal-embed.o: ggml-metal.metal ggml-common.h endif endif # LLAMA_METAL -ifdef LLAMA_MPI -ggml-mpi.o: ggml-mpi.c ggml-mpi.h - $(CC) $(CFLAGS) -c $< -o $@ -endif # LLAMA_MPI - ifndef LLAMA_NO_LLAMAFILE sgemm.o: sgemm.cpp sgemm.h ggml.h $(CXX) $(CXXFLAGS) -c $< -o $@ diff --git a/README.md b/README.md index 7dd6fc0eba824..4abfd6d7e9dac 100644 --- a/README.md +++ b/README.md @@ -382,45 +382,6 @@ To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or th When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line argument. -### MPI Build - -MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine. - -First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc). - -Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically): - -- Using `make`: - - ```bash - make CC=mpicc CXX=mpicxx LLAMA_MPI=1 - ``` - -- Using `CMake`: - - ```bash - cmake -S . -B build -DLLAMA_MPI=ON - ``` - -Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines. - -Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost". - -Here is an example hostfile: - -``` -192.168.0.1:2 -malvolio.local:1 -``` - -The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive. - -Finally, you're ready to run a computation using `mpirun`: - -```bash -mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -``` - ### BLAS Build Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use: diff --git a/ggml-mpi.c b/ggml-mpi.c deleted file mode 100644 index ae176d7075826..0000000000000 --- a/ggml-mpi.c +++ /dev/null @@ -1,216 +0,0 @@ -#include "ggml-mpi.h" - -#include "ggml.h" - -#include - -#include -#include - -#define MIN(a, b) ((a) < (b) ? (a) : (b)) - -#define UNUSED GGML_UNUSED - -struct ggml_mpi_context { - int rank; - int size; -}; - -void ggml_mpi_backend_init(void) { - MPI_Init(NULL, NULL); -} - -void ggml_mpi_backend_free(void) { - MPI_Finalize(); -} - -struct ggml_mpi_context * ggml_mpi_init(void) { - struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context)); - - MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank); - MPI_Comm_size(MPI_COMM_WORLD, &ctx->size); - - return ctx; -} - -void ggml_mpi_free(struct ggml_mpi_context * ctx) { - free(ctx); -} - -int ggml_mpi_rank(struct ggml_mpi_context * ctx) { - return ctx->rank; -} - -void ggml_mpi_eval_init( - struct ggml_mpi_context * ctx_mpi, - int * n_tokens, - int * n_past, - int * n_threads) { - UNUSED(ctx_mpi); - - // synchronize the worker node parameters with the root node - MPI_Barrier(MPI_COMM_WORLD); - - MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD); - MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD); -} - -static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) { - struct ggml_tensor * t = ggml_graph_get_tensor(gf, name); - if (t == NULL) { - fprintf(stderr, "%s: tensor %s not found\n", __func__, name); - return -1; - } - - for (int i = 0; i < gf->n_nodes; i++) { - if (gf->nodes[i] == t) { - return i; - } - } - - fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name); - return -1; -} - -static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) { - MPI_Datatype mpi_type; - - switch (t->type) { - case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break; - case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break; - default: GGML_ASSERT(false && "not implemented"); - } - - MPI_Status status; UNUSED(status); - - const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status); - GGML_ASSERT(retval == MPI_SUCCESS); -} - -// TODO: there are many improvements that can be done to this implementation -void ggml_mpi_graph_compute_pre( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens"); - if (inp_tokens == NULL) { - fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__); - return; - } - - struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0"); - if (inp0 == NULL) { - fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__); - return; - } - - GGML_ASSERT(inp0 == gf->nodes[0]); - - // distribute the compute graph into slices across the MPI nodes - // - // the main node (0) processes the last layers + the remainder of the compute graph - // and is responsible to pass the input tokens to the first node (1) - // - // node 1: [( 0) * n_per_node, ( 1) * n_per_node) - // node 2: [( 1) * n_per_node, ( 2) * n_per_node) - // ... - // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node) - // node 0: [(n-1) * n_per_node, n_nodes) - // - if (mpi_rank > 0) { - if (mpi_rank == 1) { - // the first node (1) receives the input tokens from the main node (0) - ggml_mpi_tensor_recv(inp_tokens, 0); - } else { - // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph) - ggml_mpi_tensor_recv(inp0, mpi_rank - 1); - } - } else if (mpi_size > 1) { - // node 0 sends the input tokens to node 1 - ggml_mpi_tensor_send(inp_tokens, 1); - - // recv the output data from the last node - ggml_mpi_tensor_recv(inp0, mpi_size - 1); - } - - { - const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size; - - const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1; - - const int il0 = (mpi_idx + 0) * n_per_node; - const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node); - - char name_l0[GGML_MAX_NAME]; - char name_l1[GGML_MAX_NAME]; - - snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0); - snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1); - - const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0); - const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes; - - if (idx_l0 < 0 || idx_l1 < 0) { - fprintf(stderr, "%s: layer input nodes not found\n", __func__); - return; - } - - // attach the input data to all nodes that need it - // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below) - for (int i = idx_l0; i < idx_l1; i++) { - if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[0] = inp0; - } - if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) { - gf->nodes[i]->src[1] = inp0; - } - } - - // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph - for (int i = 1; i < idx_l1 - idx_l0; i++) { - gf->nodes[i] = gf->nodes[idx_l0 + i]; - gf->grads[i] = gf->grads[idx_l0 + i]; - } - - // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node - if (mpi_idx != 0) { - gf->nodes[0]->op = GGML_OP_NONE; - } - - gf->n_nodes = idx_l1 - idx_l0; - - //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1); - } -} - -void ggml_mpi_graph_compute_post( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers) { - UNUSED(n_layers); - - const int mpi_rank = ctx_mpi->rank; - const int mpi_size = ctx_mpi->size; - - // send the output data to the next node - if (mpi_rank > 0) { - ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size); - } -} diff --git a/ggml-mpi.h b/ggml-mpi.h deleted file mode 100644 index eda119d449849..0000000000000 --- a/ggml-mpi.h +++ /dev/null @@ -1,39 +0,0 @@ -#pragma once - -struct ggml_context; -struct ggml_tensor; -struct ggml_cgraph; - -#ifdef __cplusplus -extern "C" { -#endif - -struct ggml_mpi_context; - -void ggml_mpi_backend_init(void); -void ggml_mpi_backend_free(void); - -struct ggml_mpi_context * ggml_mpi_init(void); -void ggml_mpi_free(struct ggml_mpi_context * ctx); - -int ggml_mpi_rank(struct ggml_mpi_context * ctx); - -void ggml_mpi_eval_init( - struct ggml_mpi_context * ctx_mpi, - int * n_tokens, - int * n_past, - int * n_threads); - -void ggml_mpi_graph_compute_pre( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers); - -void ggml_mpi_graph_compute_post( - struct ggml_mpi_context * ctx_mpi, - struct ggml_cgraph * gf, - int n_layers); - -#ifdef __cplusplus -} -#endif diff --git a/llama.cpp b/llama.cpp index 06ff4da617f5d..102bc2020aaac 100644 --- a/llama.cpp +++ b/llama.cpp @@ -26,9 +26,6 @@ #ifdef GGML_USE_METAL # include "ggml-metal.h" #endif -#ifdef GGML_USE_MPI -# include "ggml-mpi.h" -#endif #ifndef QK_K # ifdef GGML_QKK_64 # define QK_K 64 @@ -2270,10 +2267,6 @@ struct llama_context { // control vectors struct llama_control_vector cvec; - -#ifdef GGML_USE_MPI - ggml_mpi_context * ctx_mpi = NULL; -#endif }; static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) { @@ -6336,10 +6329,7 @@ static struct ggml_tensor * llm_build_inp_embd( inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); } else { -#ifdef GGML_USE_MPI - GGML_ASSERT(false && "not implemented"); -#endif - lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); + lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); inpL = lctx.inp_embd; ggml_set_input(lctx.inp_embd); } @@ -11351,11 +11341,6 @@ static void llama_graph_compute( llama_context & lctx, ggml_cgraph * gf, int n_threads) { -#ifdef GGML_USE_MPI - const int64_t n_layer = lctx.model.hparams.n_layer; - ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); -#endif - #ifdef GGML_USE_METAL if (ggml_backend_is_metal(lctx.backend_metal)) { ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); @@ -11370,10 +11355,6 @@ static void llama_graph_compute( ggml_backend_sched_graph_compute_async(lctx.sched, gf); // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); - -#ifdef GGML_USE_MPI - ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); -#endif } // decode a batch of tokens by evaluating the transformer @@ -11411,12 +11392,6 @@ static int llama_decode_internal( } lctx.n_queued_tokens += n_tokens_all; -#ifdef GGML_USE_MPI - // TODO: needs fix after #3228 - GGML_ASSERT(false && "not implemented"); - //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); -#endif - auto & kv_self = lctx.kv_self; const int64_t n_embd = hparams.n_embd; @@ -15546,10 +15521,6 @@ void llama_backend_init(void) { struct ggml_context * ctx = ggml_init(params); ggml_free(ctx); } - -#ifdef GGML_USE_MPI - ggml_mpi_backend_init(); -#endif } void llama_numa_init(enum ggml_numa_strategy numa) { @@ -15559,9 +15530,6 @@ void llama_numa_init(enum ggml_numa_strategy numa) { } void llama_backend_free(void) { -#ifdef GGML_USE_MPI - ggml_mpi_backend_free(); -#endif ggml_quantize_free(); } @@ -15962,20 +15930,6 @@ struct llama_context * llama_new_context_with_model( } } -#ifdef GGML_USE_MPI - ctx->ctx_mpi = ggml_mpi_init(); - - if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { - // Enter a blocking eval loop with dummy input, letting rank=0 drive the process - // TODO: needs fix after #3228 - GGML_ASSERT(false && "not implemented"); - //const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); - //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; - llama_backend_free(); - exit(1); - } -#endif - return ctx; } diff --git a/scripts/LlamaConfig.cmake.in b/scripts/LlamaConfig.cmake.in index f842c7137517c..92e39708b7cf2 100644 --- a/scripts/LlamaConfig.cmake.in +++ b/scripts/LlamaConfig.cmake.in @@ -5,7 +5,6 @@ set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@) set(LLAMA_BLAS @LLAMA_BLAS@) set(LLAMA_CUDA @LLAMA_CUDA@) set(LLAMA_METAL @LLAMA_METAL@) -set(LLAMA_MPI @LLAMA_MPI@) set(LLAMA_CLBLAST @LLAMA_CLBLAST@) set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@) set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@) @@ -37,10 +36,6 @@ if (LLAMA_METAL) find_library(METALKIT_FRAMEWORK MetalKit REQUIRED) endif() -if (LLAMA_MPI) - find_package(MPI REQUIRED) -endif() - if (LLAMA_CLBLAST) find_package(CLBlast REQUIRED) endif() From 33c8d50accd6dca73c9c4af00a05e24209c160fe Mon Sep 17 00:00:00 2001 From: Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com> Date: Sun, 19 May 2024 19:18:39 -0700 Subject: [PATCH 02/18] Add provisions for windows support for BF16 code including CMake provision for enabling AVX512_BF16 (#7258) --- CMakeLists.txt | 8 ++++++++ ggml-impl.h | 12 ++++++++++++ ggml.c | 24 ++++++++++++++++-------- ggml.h | 1 + llama.cpp | 1 + 5 files changed, 38 insertions(+), 8 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 616698c7fe28c..92c9f09eb5d9d 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -77,6 +77,7 @@ option(LLAMA_AVX2 "llama: enable AVX2" option(LLAMA_AVX512 "llama: enable AVX512" OFF) option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF) option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF) +option(LLAMA_AVX512_BF16 "llama: enable AVX512-BF16" OFF) option(LLAMA_FMA "llama: enable FMA" ${INS_ENB}) # in MSVC F16C is implied with AVX2/AVX512 if (NOT MSVC) @@ -1060,6 +1061,10 @@ elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LW add_compile_definitions($<$:__AVX512VNNI__>) add_compile_definitions($<$:__AVX512VNNI__>) endif() + if (LLAMA_AVX512_BF16) + add_compile_definitions($<$:__AVX512BF16__>) + add_compile_definitions($<$:__AVX512BF16__>) + endif() elseif (LLAMA_AVX2) list(APPEND ARCH_FLAGS /arch:AVX2) elseif (LLAMA_AVX) @@ -1091,6 +1096,9 @@ elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LW if (LLAMA_AVX512_VNNI) list(APPEND ARCH_FLAGS -mavx512vnni) endif() + if (LLAMA_AVX512_BF16) + list(APPEND ARCH_FLAGS -mavx512bf16) + endif() endif() elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64") message(STATUS "PowerPC detected") diff --git a/ggml-impl.h b/ggml-impl.h index 59684fa81f07e..5ff014fe3f339 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -17,6 +17,18 @@ #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) +#if defined(_WIN32) + +#define m512bh(p) p +#define m512i(p) p + +#else + +#define m512bh(p) (__m512bh)(p) +#define m512i(p) (__m512i)(p) + +#endif + /** * Converts brain16 to float32. * diff --git a/ggml.c b/ggml.c index 3a104c486339e..53da231ee061c 100644 --- a/ggml.c +++ b/ggml.c @@ -406,10 +406,10 @@ void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) { int i = 0; #if defined(__AVX512BF16__) for (; i + 32 <= n; i += 32) { - _mm512_storeu_ps( - (__m512 *)(y + i), - (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16), - _mm512_loadu_ps(x + i))); + _mm512_storeu_si512( + (__m512i *)(y + i), + m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16), + _mm512_loadu_ps(x + i)))); } #endif for (; i < n; i++) { @@ -1666,10 +1666,10 @@ static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t __m512 c1 = _mm512_setzero_ps(); __m512 c2 = _mm512_setzero_ps(); for (; i + 64 <= n; i += 64) { - c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)), - (__m512bh)_mm512_loadu_ps((const float *)(y + i))); - c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)), - (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32))); + c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))), + m512bh(_mm512_loadu_si512((y + i)))); + c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))), + m512bh(_mm512_loadu_si512((y + i + 32)))); } sumf += (ggml_float)_mm512_reduce_add_ps(c1); sumf += (ggml_float)_mm512_reduce_add_ps(c2); @@ -23137,6 +23137,14 @@ int ggml_cpu_has_avx512_vnni(void) { #endif } +int ggml_cpu_has_avx512_bf16(void) { +#if defined(__AVX512BF16__) + return 1; +#else + return 0; +#endif +} + int ggml_cpu_has_fma(void) { #if defined(__FMA__) return 1; diff --git a/ggml.h b/ggml.h index 8c13f4ba89c6e..77475710129d7 100644 --- a/ggml.h +++ b/ggml.h @@ -2390,6 +2390,7 @@ extern "C" { GGML_API int ggml_cpu_has_avx512 (void); GGML_API int ggml_cpu_has_avx512_vbmi(void); GGML_API int ggml_cpu_has_avx512_vnni(void); + GGML_API int ggml_cpu_has_avx512_bf16(void); GGML_API int ggml_cpu_has_fma (void); GGML_API int ggml_cpu_has_neon (void); GGML_API int ggml_cpu_has_arm_fma (void); diff --git a/llama.cpp b/llama.cpp index 102bc2020aaac..ca3e9fcc0c249 100644 --- a/llama.cpp +++ b/llama.cpp @@ -18074,6 +18074,7 @@ const char * llama_print_system_info(void) { s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; + s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; From 2789baf480ba7dc9281b65f601f0918e58920f54 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 20 May 2024 08:55:09 +0300 Subject: [PATCH 03/18] tests : fix --keep_split -> --keep-split (#7374) --- examples/quantize/tests.sh | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/quantize/tests.sh b/examples/quantize/tests.sh index 160c12bee22e8..a3ca74c68e7e5 100644 --- a/examples/quantize/tests.sh +++ b/examples/quantize/tests.sh @@ -41,8 +41,8 @@ $SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/g echo PASS echo -# 3. Requant model with '--keep_split' -$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K +# 3. Requant model with '--keep-split' +$QUANTIZE --allow-requantize --keep-split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K echo PASS echo @@ -51,7 +51,7 @@ $MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt echo PASS echo -# 4. Requant mode without '--keep_split' +# 4. Requant mode without '--keep-split' $QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K echo PASS echo From e932094d58f513d5996c3efc9f6fed8238894c57 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 20 May 2024 08:56:05 +0300 Subject: [PATCH 04/18] server : return error on too large embedding input (#7389) --- examples/server/server.cpp | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 7978f979dde66..6af5cb96e6d13 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -1981,8 +1981,7 @@ struct server_context { slot.state = SLOT_STATE_PROCESSING; slot.command = SLOT_COMMAND_NONE; slot.release(); - slot.print_timings(); - send_final_response(slot); + send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER); continue; } } else { From 1cc0155d04918cb3017afa472acea51b77483c4a Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 20 May 2024 10:16:41 +0300 Subject: [PATCH 05/18] server : tuning tests (#7388) * server : don't pass temperature as string * server : increase timeout * tests : fix the fix 0.8f -> 0.8 ggml-ci * tests : set explicit temperature --- examples/server/tests/features/results.feature | 2 ++ examples/server/tests/features/steps/steps.py | 4 ++-- 2 files changed, 4 insertions(+), 2 deletions(-) diff --git a/examples/server/tests/features/results.feature b/examples/server/tests/features/results.feature index 5deb278c2a53c..4ab8ad20c2680 100644 --- a/examples/server/tests/features/results.feature +++ b/examples/server/tests/features/results.feature @@ -13,6 +13,7 @@ Feature: Results Scenario Outline: consistent results with same seed Given slots + And 0.0 temperature Then the server is starting Then the server is healthy @@ -30,6 +31,7 @@ Feature: Results Scenario Outline: different results with different seed Given slots + And 1.0 temperature Then the server is starting Then the server is healthy diff --git a/examples/server/tests/features/steps/steps.py b/examples/server/tests/features/steps/steps.py index 7da503f2c4b34..26d9359d7f3f8 100644 --- a/examples/server/tests/features/steps/steps.py +++ b/examples/server/tests/features/steps/steps.py @@ -199,7 +199,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status): case 'ready' | 'idle': await wait_for_health_status(context, context.base_url, 200, 'ok', - timeout=10, + timeout=30, params={'fail_on_no_slot': 0, 'include_slots': 0}, slots_idle=context.n_slots, slots_processing=0, @@ -883,7 +883,7 @@ async def request_completion(prompt, "cache_prompt": cache_prompt, "id_slot": id_slot, "seed": seed if seed is not None else 42, - "temperature": temperature if temperature is not None else "0.8f", + "temperature": temperature if temperature is not None else 0.8, "n_probs": 2, }, headers=headers, From 65c58207ece92ad213f4bfd0f91dcb2dfb664f5b Mon Sep 17 00:00:00 2001 From: junchao-loongson <68935141+junchao-loongson@users.noreply.github.com> Date: Mon, 20 May 2024 15:19:21 +0800 Subject: [PATCH 06/18] ggml : add loongarch lsx and lasx support (#6454) * add loongarch lsx and lasx optimize code * Add loongarch compilation support to makefile * revert stb_image.h * opt bytes_from_nibbles_32 and sum_i16_pairs_float * fix undeclared * format code * update * update 2 --------- Co-authored-by: Jinyang He --- CMakeLists.txt | 13 + Makefile | 5 + ggml-impl.h | 28 + ggml-quants.c | 2235 ++++++++++++++++++++++++++++++++++++++++++++++-- ggml.c | 189 ++++ 5 files changed, 2389 insertions(+), 81 deletions(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 92c9f09eb5d9d..9cc60039a8416 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -134,6 +134,8 @@ set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeli option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_SERVER "llama: build server example" ON) +option(LLAMA_LASX "llama: enable lasx" ON) +option(LLAMA_LSX "llama: enable lsx" ON) # add perf arguments option(LLAMA_PERF "llama: enable perf" OFF) @@ -1108,6 +1110,17 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64") list(APPEND ARCH_FLAGS -mcpu=native -mtune=native) #TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be) endif() +elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64") + message(STATUS "loongarch64 detected") + + list(APPEND ARCH_FLAGS -march=loongarch64) + if (LLAMA_LASX) + list(APPEND ARCH_FLAGS -mlasx) + endif() + if (LLAMA_LSX) + list(APPEND ARCH_FLAGS -mlsx) + endif() + else() message(STATUS "Unknown architecture") endif() diff --git a/Makefile b/Makefile index 9a26aec507dbc..6b7c853b3bf2b 100644 --- a/Makefile +++ b/Makefile @@ -379,6 +379,11 @@ ifneq ($(filter ppc64le%,$(UNAME_M)),) CUDA_POWER_ARCH = 1 endif +ifneq ($(filter loongarch64%,$(UNAME_M)),) + MK_CFLAGS += -mlasx + MK_CXXFLAGS += -mlasx +endif + else MK_CFLAGS += -march=rv64gcv -mabi=lp64d MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d diff --git a/ggml-impl.h b/ggml-impl.h index 5ff014fe3f339..362d40f4d1d8b 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -455,6 +455,34 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { #include #endif +#if defined(__loongarch64) +#if defined(__loongarch_asx) +#include +#endif +#if defined(__loongarch_sx) +#include +#endif +#endif + +#if defined(__loongarch_asx) + +typedef union { + int32_t i; + float f; +} ft_union; + +/* float type data load instructions */ +static __m128 __lsx_vreplfr2vr_s(float val) { + ft_union fi_tmpval = {.f = val}; + return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i); +} + +static __m256 __lasx_xvreplfr2vr_s(float val) { + ft_union fi_tmpval = {.f = val}; + return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i); +} +#endif + #ifdef __F16C__ #ifdef _MSC_VER diff --git a/ggml-quants.c b/ggml-quants.c index ff10598638169..ed40ca74a3501 100644 --- a/ggml-quants.c +++ b/ggml-quants.c @@ -262,6 +262,403 @@ static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4 static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4 #endif +#if defined(__loongarch_asx) + +#ifdef __clang__ +#define VREGS_PREFIX "$vr" +#define XREGS_PREFIX "$xr" +#else // GCC +#define VREGS_PREFIX "$f" +#define XREGS_PREFIX "$f" +#endif +#define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31" +// Convert __m128i to __m256i +static inline __m256i ____m256i(__m128i in) { + __m256i out = __lasx_xvldi(0); + __asm__ volatile ( + ".irp i," __ALL_REGS "\n\t" + " .ifc %[out], " XREGS_PREFIX"\\i \n\t" + " .irp j," __ALL_REGS "\n\t" + " .ifc %[in], " VREGS_PREFIX "\\j \n\t" + " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t" + " .endif \n\t" + " .endr \n\t" + " .endif \n\t" + ".endr \n\t" + : [out] "+f" (out) : [in] "f" (in) + ); + return out; +} +// Convert two __m128i to __m256i +static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) { + __m256i out; + __asm__ volatile ( + ".irp i," __ALL_REGS "\n\t" + " .ifc %[hi], " VREGS_PREFIX "\\i \n\t" + " .irp j," __ALL_REGS "\n\t" + " .ifc %[lo], " VREGS_PREFIX "\\j \n\t" + " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t" + " .endif \n\t" + " .endr \n\t" + " .endif \n\t" + ".endr \n\t" + ".ifnc %[out], %[hi] \n\t" + ".irp i," __ALL_REGS "\n\t" + " .ifc %[out], " XREGS_PREFIX "\\i \n\t" + " .irp j," __ALL_REGS "\n\t" + " .ifc %[hi], " VREGS_PREFIX "\\j \n\t" + " xvori.b $xr\\i, $xr\\j, 0 \n\t" + " .endif \n\t" + " .endr \n\t" + " .endif \n\t" + ".endr \n\t" + ".endif \n\t" + : [out] "=f" (out), [hi] "+f" (inhi) + : [lo] "f" (inlo) + ); + return out; +} +// Convert __m256i low part to __m128i +static inline __m128i lasx_extracti128_lo(__m256i in) { + __m128i out; + __asm__ volatile ( + ".ifnc %[out], %[in] \n\t" + ".irp i," __ALL_REGS "\n\t" + " .ifc %[out], " VREGS_PREFIX "\\i \n\t" + " .irp j," __ALL_REGS "\n\t" + " .ifc %[in], " XREGS_PREFIX "\\j \n\t" + " vori.b $vr\\i, $vr\\j, 0 \n\t" + " .endif \n\t" + " .endr \n\t" + " .endif \n\t" + ".endr \n\t" + ".endif \n\t" + : [out] "=f" (out) : [in] "f" (in) + ); + return out; +} +// Convert __m256i high part to __m128i +static inline __m128i lasx_extracti128_hi(__m256i in) { + __m128i out; + __asm__ volatile ( + ".irp i," __ALL_REGS "\n\t" + " .ifc %[out], " VREGS_PREFIX "\\i \n\t" + " .irp j," __ALL_REGS "\n\t" + " .ifc %[in], " XREGS_PREFIX "\\j \n\t" + " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t" + " .endif \n\t" + " .endr \n\t" + " .endif \n\t" + ".endr \n\t" + : [out] "=f" (out) : [in] "f" (in) + ); + return out; +} + +static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) { + v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7}; + return (__m256i)__ret; +} + +static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) { + v4i32 __ret = {d, c, b, a}; + return (__m128i)__ret; +} + +static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) { + v4i64 __ret = {d, c, b, a}; + return (__m256i)__ret; +} + +static __m256i lasx_insertf128( __m128i x, __m128i y) { + return lasx_set_q(x, y); +} + +static __m128i lsx_shuffle_b(__m128i a, __m128i b) { + __m128i mask_f, zero, tmp0, tmp2, mask; + int f = 0x8f; + mask_f = __lsx_vreplgr2vr_b(f); + zero = __lsx_vldi(0); + tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits + tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive + mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask + tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones + return __lsx_vshuf_b(a, zero, tmp2); +} + +static __m256i lasx_shuffle_b(__m256i a, __m256i b) { + __m256i mask_f, zero, tmp0, tmp2, mask; + int f = 0x8f; + mask_f = __lasx_xvreplgr2vr_b(f); + zero = __lasx_xvldi(0); + tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits + tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive + mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask + tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones + return __lasx_xvshuf_b(a, zero, tmp2); +} + +static __m256i lasx_extu8_16(__m128i a) { + __m128i zero = __lsx_vldi(0); + __m128i vlo = __lsx_vilvl_b(zero, a); + __m128i vhi = __lsx_vilvh_b(zero, a); + return lasx_set_q(vhi, vlo); +} + +static __m256i lasx_ext8_16(__m128i a) { + __m128i sign = __lsx_vslti_b(a, 0); + __m128i vlo = __lsx_vilvl_b(sign, a); + __m128i vhi = __lsx_vilvh_b(sign, a); + return lasx_set_q(vhi, vlo); +} + +static __m256i lasx_ext16_32(__m128i a) { + __m256i tmp1; + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6); + tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7); + return tmp1; +} + +static __m128i lasx_extracti128( __m256i a, int pos) { + __m128i ret; + if( pos == 0) + { + ret = lasx_extracti128_lo(a); + } else { + ret = lasx_extracti128_hi(a); + } + return ret; +} + +static __m128 lasx_extractf128( __m256 a, int pos) { + __m128 ret; + if( pos == 0) + { + ret = (__m128)lasx_extracti128_lo((__m256i)a); + } else { + ret = (__m128)lasx_extracti128_hi((__m256i)a); + } + return ret; +} + +static __m128i lsx_hadd_h(__m128i a, __m128i b) { + __m128i tmp1 = __lsx_vpickev_h(b, a); + __m128i tmp2 = __lsx_vpickod_h(b, a); + return __lsx_vadd_h(tmp1, tmp2); +} + +static __m128i lsx_hadd_w(__m128i a, __m128i b) { + __m128i tmp1 = __lsx_vpickev_w(b, a); + __m128i tmp2 = __lsx_vpickod_w(b, a); + return __lsx_vadd_w(tmp1, tmp2); +} + +static __m128 lsx_hadd_s(__m128 a, __m128 b) { + __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a); + __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a); + + return __lsx_vfadd_s(tmp1, tmp2); +} + +static __m256i lasx_maddubs_h(__m256i a, __m256i b) { + __m256i tmp1, tmp2; + tmp1 = __lasx_xvmulwev_h_b(a, b); + tmp2 = __lasx_xvmulwod_h_b(a, b); + return __lasx_xvsadd_h(tmp1, tmp2); +} + +static __m256i lasx_madd_h(__m256i a, __m256i b) { + __m256i tmp1, tmp2; + tmp1 = __lasx_xvmulwev_w_h(a, b); + tmp2 = __lasx_xvmulwod_w_h(a, b); + return __lasx_xvadd_w(tmp1, tmp2); +} + +static __m256i lasx_packs_w(__m256i a, __m256i b) { + __m256i tmp, tmp1; + tmp = __lasx_xvsat_w(a, 15); + tmp1 = __lasx_xvsat_w(b, 15); + return __lasx_xvpickev_h(tmp1, tmp); +} + +static __m256i lasx_packs_h(__m256i a, __m256i b) { + __m256i tmp, tmp1; + tmp = __lasx_xvsat_h(a, 7); + tmp1 = __lasx_xvsat_h(b, 7); + return __lasx_xvpickev_b(tmp1, tmp); +} + +static __m128i lsx_packs_w(__m128i a, __m128i b) { + __m128i tmp, tmp1; + tmp = __lsx_vsat_w(a, 15); + tmp1 = __lsx_vsat_w(b, 15); + return __lsx_vpickev_h(tmp1, tmp); +} + +static __m128i lsx_packs_h(__m128i a, __m128i b) { + __m128i tmp, tmp1; + tmp = __lsx_vsat_h(a, 7); + tmp1 = __lsx_vsat_h(b, 7); + return __lsx_vpickev_b(tmp1, tmp); +} + +static __m128i lsx_packus_h(__m128i a, __m128i b) { + __m128i tmp, tmp1; + tmp = __lsx_vsat_hu(a, 7); + tmp1 = __lsx_vsat_hu(b, 7); + return __lsx_vpickev_b(tmp1, tmp); +} + + +static __m128i lsx_maddubs_h(__m128i a, __m128i b) { + __m128i tmp1, tmp2; + tmp1 = __lsx_vmulwev_h_b(a, b); + tmp2 = __lsx_vmulwod_h_b(a, b); + return __lsx_vsadd_h(tmp1, tmp2); +} + +static __m128i lsx_madd_h(__m128i a, __m128i b) { + __m128i tmp1, tmp2; + tmp1 = __lsx_vmulwev_w_h(a, b); + tmp2 = __lsx_vmulwod_w_h(a, b); + return __lsx_vadd_w(tmp1, tmp2); +} + +// multiply int8_t, add results pairwise twice +static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) { + // Get absolute values of x vectors + const __m128i ax = __lsx_vsigncov_b(x, x); + // Sign the values of the y vectors + const __m128i sy = __lsx_vsigncov_b(x, y); + // Perform multiplication and create 16-bit values + const __m128i dot = lsx_maddubs_h(ax, sy); + const __m128i ones = __lsx_vreplgr2vr_h(1); + return lsx_madd_h(ones, dot); +} + +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = lasx_extractf128(x, 1); + ft_union tmp; + res = __lsx_vfadd_s(res, lasx_extractf128(x, 0)); + res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res)); + res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0)); + tmp.i = __lsx_vpickve2gr_w(res, 0); + return tmp.f; +} + +// horizontally add 8 int32_t +static inline int hsum_i32_8(const __m256i a) { + + __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11); + __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00); + + __m128i tmp1_128 = lasx_extracti128_lo(tmp1); + __m128i tmp2_128 = lasx_extracti128_lo(tmp2); + + __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128); + + __m128i ev = __lsx_vpickev_w(sum128, sum128); + __m128i od = __lsx_vpickod_w(sum128, sum128); + __m128i sum64 = __lsx_vadd_w(ev, od); + + int sum64_1, sum64_2; + sum64_1 = __lsx_vpickve2gr_w(sum64, 0); + sum64_2 = __lsx_vpickve2gr_w(sum64, 1); + + return sum64_1 + sum64_2; +} + +// horizontally add 4 int32_t +static inline int hsum_i32_4(const __m128i a) { + __m128i ev = __lsx_vpickev_w(a, a); + __m128i od = __lsx_vpickod_w(a, a); + __m128i sum64 = __lsx_vadd_w(ev, od); + + int sum64_1, sum64_2; + sum64_1 = __lsx_vpickve2gr_w(sum64, 0); + sum64_2 = __lsx_vpickve2gr_w(sum64, 1); + + return sum64_1 + sum64_2; +} + +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m256i shuf_mask = lasx_set_d( + 0x0303030303030303, 0x0202020202020202, + 0x0101010101010101, 0x0000000000000000); + + __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask); + const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe); + bytes = __lasx_xvor_v(bytes, bit_mask); + return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1)); +} + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { + const __m128i lo = __lsx_vld((const __m128i *)rsi, 0); + __m128i hi = __lsx_vsrli_h(lo, 4); + return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf); +} + +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m256i x) { + __m256i v = __lasx_xvpackod_h(x, x); + __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v); + return __lasx_xvffint_s_w(summed_pairs); +} + +static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { + // Perform multiplication and create 16-bit values + const __m256i dot = lasx_maddubs_h(ax, sy); + return sum_i16_pairs_float(dot); +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { + + // Get absolute values of x vectors + const __m256i ax = __lasx_xvsigncov_b(x, x); + // Sign the values of the y vectors + const __m256i sy = __lasx_xvsigncov_b(x, y); + + return mul_sum_us8_pairs_float(ax, sy); +} + +static inline __m128i packNibbles( __m256i bytes ) { + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh + const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF); + __m256i high = __lasx_xvandn_v(lowByte, bytes); + __m256i low = __lasx_xvand_v(lowByte, bytes); + high = __lasx_xvsrli_h(high, 4); + bytes = __lasx_xvor_v(low, high); + // Compress uint16_t lanes into bytes + __m128i *r0 = (__m128i *)&bytes; + __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11); + __m128i *r1 = (__m128i *)&tmp_h128; + + __m128i zero = __lsx_vldi(0); + __m128i tmp, tmp2, tmp3; + + tmp = __lsx_vmax_h(zero, *r0); + tmp2 = __lsx_vsat_hu(tmp, 7); + + tmp = __lsx_vmax_h(zero, *r1); + tmp3 = __lsx_vsat_hu(tmp, 7); + return __lsx_vpickev_b(tmp3, tmp2); +} +#endif //__loongarch_asx + // reference implementation for deterministic creation of model files void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) { static const int qk = QK4_0; @@ -649,6 +1046,7 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) // store result __riscv_vse8_v_i8m1(y[i].qs , vs, vl); } + #elif defined(__POWER9_VECTOR__) for (int i = 0; i < nb; i++) { vector float srcv [8]; @@ -680,6 +1078,69 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) } vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]); vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]); + +#elif defined(__loongarch_asx) + for (int i = 0; i < nb; i++) { + ft_union fi; + __m256 v0 = (__m256)__lasx_xvld( x , 0); + __m256 v1 = (__m256)__lasx_xvld( x , 32); + __m256 v2 = (__m256)__lasx_xvld( x , 64); + __m256 v3 = (__m256)__lasx_xvld( x , 96); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f ); + __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) ); + + __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) ); + max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) ); + __m128 tmp = max4; + max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 )); + fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 ); + const float max_scalar = fi.f; + + // Quantize these floats + const float d = max_scalar / 127.f; + y[i].d = GGML_FP32_TO_FP16(d); + const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f; + const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id ); + + // Apply the multiplier + v0 = __lasx_xvfmul_s( v0, mul ); + v1 = __lasx_xvfmul_s( v1, mul ); + v2 = __lasx_xvfmul_s( v2, mul ); + v3 = __lasx_xvfmul_s( v3, mul ); + + // Round to nearest integer + __m256i i0 = __lasx_xvftintrne_w_s( v0 ); + __m256i i1 = __lasx_xvftintrne_w_s( v1 ); + __m256i i2 = __lasx_xvftintrne_w_s( v2 ); + __m256i i3 = __lasx_xvftintrne_w_s( v3 ); + + __m128i ni0 = lasx_extracti128( i0, 0 ); + __m128i ni1 = lasx_extracti128( i0, 1); + __m128i ni2 = lasx_extracti128( i1, 0); + __m128i ni3 = lasx_extracti128( i1, 1); + __m128i ni4 = lasx_extracti128( i2, 0); + __m128i ni5 = lasx_extracti128( i2, 1); + __m128i ni6 = lasx_extracti128( i3, 0); + __m128i ni7 = lasx_extracti128( i3, 1); + + // Convert int32 to int16 + ni0 = lsx_packs_w( ni0, ni1 ); + ni2 = lsx_packs_w( ni2, ni3 ); + ni4 = lsx_packs_w( ni4, ni5 ); + ni6 = lsx_packs_w( ni6, ni7 ); + // Convert int16 to int8 + ni0 = lsx_packs_h( ni0, ni2 ); + ni4 = lsx_packs_h( ni4, ni6 ); + + __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0); + __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0); + } #else GGML_UNUSED(nb); @@ -828,12 +1289,12 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); - const float maxScalar = _mm_cvtss_f32( max4 ); + const float max_scalar = _mm_cvtss_f32( max4 ); // Quantize these floats - const float d = maxScalar / 127.f; + const float d = max_scalar / 127.f; y[i].d = GGML_FP32_TO_FP16(d); - const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f; const __m256 mul = _mm256_set1_ps( id ); // Apply the multiplier @@ -936,6 +1397,7 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) int sum = __riscv_vmv_x_s_i16m1_i16(vwrs); y[i].s = GGML_FP32_TO_FP16(sum*d); } + #elif defined(__POWER9_VECTOR__) for (int i = 0; i < nb; i++) { vector float srcv [8]; @@ -975,6 +1437,73 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) accv = vec_add(accv, vec_sld(accv, accv, 4)); accv = vec_add(accv, vec_sld(accv, accv, 8)); y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0)); + +#elif defined(__loongarch_asx) + for (int i = 0; i < nb; i++) { + ft_union ft; + __m256 v0 = (__m256)__lasx_xvld( x , 0 ); + __m256 v1 = (__m256)__lasx_xvld( x , 32 ); + __m256 v2 = (__m256)__lasx_xvld( x , 64 ); + __m256 v3 = (__m256)__lasx_xvld( x , 96 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f ); + __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) ); + max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) ); + + __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) ); + max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) ); + __m128 tmp = max4; + max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 )); + ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 ); + const float max_scalar = ft.f; + + // Quantize these floats + const float d = max_scalar / 127.f; + y[i].d = GGML_FP32_TO_FP16(d); + const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f; + const __m256 mul = __lasx_xvreplfr2vr_s( id ); + + // Apply the multiplier + v0 = __lasx_xvfmul_s( v0, mul ); + v1 = __lasx_xvfmul_s( v1, mul ); + v2 = __lasx_xvfmul_s( v2, mul ); + v3 = __lasx_xvfmul_s( v3, mul ); + + // Round to nearest integer + __m256i i0 = __lasx_xvftintrne_w_s( v0 ); + __m256i i1 = __lasx_xvftintrne_w_s( v1 ); + __m256i i2 = __lasx_xvftintrne_w_s( v2 ); + __m256i i3 = __lasx_xvftintrne_w_s( v3 ); + + __m128i ni0 = lasx_extracti128(i0, 0); + __m128i ni1 = lasx_extracti128( i0, 1); + __m128i ni2 = lasx_extracti128( i1, 0); + __m128i ni3 = lasx_extracti128( i1, 1); + __m128i ni4 = lasx_extracti128( i2, 0 ); + __m128i ni5 = lasx_extracti128( i2, 1); + __m128i ni6 = lasx_extracti128( i3, 0); + __m128i ni7 = lasx_extracti128( i3, 1); + + // Compute the sum of the quants and set y[i].s + const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3)); + const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7)); + y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1))); + + // Convert int32 to int16 + ni0 = lsx_packs_w( ni0, ni1 ); + ni2 = lsx_packs_w( ni2, ni3 ); + ni4 = lsx_packs_w( ni4, ni5 ); + ni6 = lsx_packs_w( ni6, ni7 ); + // Convert int16 to int8 + ni0 = lsx_packs_h( ni0, ni2 ); + ni4 = lsx_packs_h( ni4, ni6 ); + + __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0); + __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0); } #else GGML_UNUSED(nb); @@ -3470,6 +3999,43 @@ static inline __m128i get_scale_shuffle(int i) { }; return _mm_loadu_si128((const __m128i*)k_shuffle + i); } +#elif defined(__loongarch_asx) +// shuffles to pick the required scales in dot products +static inline __m256i get_scale_shuffle_q3k(int i) { + static const uint8_t k_shuffle[128] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, + }; + return __lasx_xvld((const __m256i*)k_shuffle + i, 0); +} +static inline __m256i get_scale_shuffle_k4(int i) { + static const uint8_t k_shuffle[256] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, + 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, + 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, + 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, + 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 + }; + return __lasx_xvld((const __m256i*)k_shuffle + i, 0); +} +static inline __m128i get_scale_shuffle(int i) { + static const uint8_t k_shuffle[128] = { + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, + 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, + 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, + 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, + 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 + }; + return __lsx_vld((const __m128i*)k_shuffle + i, 0); +} #endif void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { @@ -3819,6 +4385,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; + #elif defined(__POWER9_VECTOR__) const vector signed char lowMask = vec_splats((signed char)0xF); const vector unsigned char v4 = vec_splats((unsigned char)0x4); @@ -3859,57 +4426,200 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); -#else - // scalar - float sumf = 0.0; - for (int i = 0; i < nb; i++) { - int sumi = 0; +#elif defined(__loongarch_asx) + // Initialize accumulator with zeros + __m256 acc = (__m256)__lasx_xvldi(0); - for (int j = 0; j < qk/2; ++j) { - const int v0 = (x[i].qs[j] & 0x0F) - 8; - const int v1 = (x[i].qs[j] >> 4) - 8; + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); - sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); - } + __m256i qx = bytes_from_nibbles_32(x[i].qs); - sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); - } + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = __lasx_xvreplgr2vr_b( 8 ); + qx = __lasx_xvsub_b( qx, off ); - *s = sumf; -#endif -} + __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0); -void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { - const int qk = QK8_1; - const int nb = n / qk; + const __m256 q = mul_sum_i8_pairs_float(qx, qy); - assert(n % qk == 0); -#if defined(__ARM_FEATURE_MATMUL_INT8) - assert((nrc == 2) || (nrc == 1)); -#else - assert(nrc == 1); -#endif - UNUSED(nrc); - UNUSED(bx); - UNUSED(by); - UNUSED(bs); + /* Multiply q with scale and accumulate */ + acc = __lasx_xvfmadd_s( d, q, acc ); + } - const block_q4_1 * restrict x = vx; - const block_q8_1 * restrict y = vy; + *s = hsum_float_8(acc); +#elif defined(__loongarch_sx) + // set constants + const __m128i low_mask = __lsx_vreplgr2vr_b(0xF); + const __m128i off = __lsx_vreplgr2vr_b(8); -#if defined(__ARM_FEATURE_MATMUL_INT8) - if (nrc == 2) { - const block_q4_1 * restrict vx0 = vx; - const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx); - const block_q8_1 * restrict vy0 = vy; - const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by); + // Initialize accumulator with zeros + __m128 acc_0 = __lsx_vldi(0); + __m128 acc_1 = __lsx_vldi(0); + __m128 acc_2 = __lsx_vldi(0); + __m128 acc_3 = __lsx_vldi(0); - float32x4_t sumv0 = vdupq_n_f32(0.0f); - float32x4_t summs0 = vdupq_n_f32(0.0f); + // First round without accumulation + { + _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0); - for (int i = 0; i < nb; i++) { - const block_q4_1 * restrict b_x0 = &vx0[i]; + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) ); + + const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[0].qs, 0); + + __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1); + __m128i by_0 = __lsx_vld((const __m128i *)y[0].qs, 0); + bx_0 = __lsx_vsub_b(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4)); + __m128i by_1 = __lsx_vld((const __m128i *)(y[0].qs + 16), 0); + bx_1 = __lsx_vsub_b(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) ); + + const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[1].qs, 0); + + __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3); + __m128i by_2 = __lsx_vld((const __m128i *)y[1].qs, 0); + bx_2 = __lsx_vsub_b(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4)); + __m128i by_3 = __lsx_vld((const __m128i *)(y[1].qs + 16), 0); + bx_3 = __lsx_vsub_b(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = __lsx_vffint_s_w(i32_0); + __m128 p1 = __lsx_vffint_s_w(i32_1); + __m128 p2 = __lsx_vffint_s_w(i32_2); + __m128 p3 = __lsx_vffint_s_w(i32_3); + + // Apply the scale + acc_0 = __lsx_vfmul_s( d_0_1, p0 ); + acc_1 = __lsx_vfmul_s( d_0_1, p1 ); + acc_2 = __lsx_vfmul_s( d_2_3, p2 ); + acc_3 = __lsx_vfmul_s( d_2_3, p3 ); + } + + assert(nb % 2 == 0); // TODO: handle odd nb + + // Main loop + for (int i = 2; i < nb; i+=2) { + + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); + + const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[i].qs, 0); + + __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1); + __m128i by_0 = __lsx_vld((const __m128i *)y[i].qs, 0); + bx_0 = __lsx_vsub_b(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4)); + __m128i by_1 = __lsx_vld((const __m128i *)(y[i].qs + 16), 0); + bx_1 = __lsx_vsub_b(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + //_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0); + //_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) ); + + const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[i + 1].qs, 0); + + __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3); + __m128i by_2 = __lsx_vld((const __m128i *)y[i + 1].qs, 0); + bx_2 = __lsx_vsub_b(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4)); + __m128i by_3 = __lsx_vld((const __m128i *)(y[i + 1].qs + 16), 0); + bx_3 = __lsx_vsub_b(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = __lsx_vffint_s_w(i32_0); + __m128 p1 = __lsx_vffint_s_w(i32_1); + __m128 p2 = __lsx_vffint_s_w(i32_2); + __m128 p3 = __lsx_vffint_s_w(i32_3); + + // Apply the scale + __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 ); + __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 ); + __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 ); + __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 ); + + // Acummulate + acc_0 = __lsx_vfadd_s(p0_d, acc_0); + acc_1 = __lsx_vfadd_s(p1_d, acc_1); + acc_2 = __lsx_vfadd_s(p2_d, acc_2); + acc_3 = __lsx_vfadd_s(p3_d, acc_3); + } + + *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); + +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const int v0 = (x[i].qs[j] & 0x0F) - 8; + const int v1 = (x[i].qs[j] >> 4) - 8; + + sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); + } + + sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_1; + const int nb = n / qk; + + assert(n % qk == 0); +#if defined(__ARM_FEATURE_MATMUL_INT8) + assert((nrc == 2) || (nrc == 1)); +#else + assert(nrc == 1); +#endif + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q4_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + +#if defined(__ARM_FEATURE_MATMUL_INT8) + if (nrc == 2) { + const block_q4_1 * restrict vx0 = vx; + const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx); + const block_q8_1 * restrict vy0 = vy; + const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by); + + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t summs0 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i++) { + const block_q4_1 * restrict b_x0 = &vx0[i]; const block_q4_1 * restrict b_x1 = &vx1[i]; const block_q8_1 * restrict b_y0 = &vy0[i]; const block_q8_1 * restrict b_y1 = &vy1[i]; @@ -4078,6 +4788,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r } *s = sumf; + #elif defined(__POWER9_VECTOR__) const vector signed char lowMask = vec_splats((signed char)0xF); const vector unsigned char v4 = vec_splats((unsigned char)0x4); @@ -4118,6 +4829,38 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + // Initialize accumulator with zeros + __m256 acc = (__m256)__lasx_xvldi(0); + + float summs = 0; + + // Main loop + for (int i = 0; i < nb; ++i) { + const float d0 = GGML_FP16_TO_FP32(x[i].d); + const float d1 = GGML_FP16_TO_FP32(y[i].d); + + summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s); + + const __m256 d0v = __lasx_xvreplfr2vr_s( d0 ); + const __m256 d1v = __lasx_xvreplfr2vr_s( d1 ); + + // Compute combined scales + const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v ); + + // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes + const __m256i qx = bytes_from_nibbles_32(x[i].qs); + const __m256i qy = __lasx_xvld( (const __m256i *)y[i].qs, 0); + + const __m256 xy = mul_sum_us8_pairs_float(qx, qy); + + // Accumulate d0*d1*x*y + acc = __lasx_xvfmadd_s( d0d1, xy, acc ); + } + + *s = hsum_float_8(acc) + summs; + #else // scalar float sumf = 0.0; @@ -4403,6 +5146,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; + #elif defined(__POWER9_VECTOR__) const vector signed char lowMask = vec_splats((signed char)0xF); const vector unsigned char v4 = vec_splats((unsigned char)4); @@ -4446,6 +5190,31 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + // Initialize accumulator with zeros + __m256 acc = (__m256)__lasx_xvldi(0); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); //FIXME + + __m256i qx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0)); + qx = __lasx_xvor_v(qx, bxhi); + + __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0); + + const __m256 q = mul_sum_i8_pairs_float(qx, qy); + + /* Multiply q with scale and accumulate */ + acc = __lasx_xvfmadd_s(d, q, acc); + } + + *s = hsum_float_8(acc); + #else // scalar float sumf = 0.0; @@ -4750,6 +5519,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * r } *s = sumf; + #elif defined(__POWER9_VECTOR__) const vector signed char lowMask = vec_splats((signed char)0xF); const vector unsigned char v4 = vec_splats((unsigned char)0x4); @@ -4797,6 +5567,34 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + // Initialize accumulator with zeros + __m256 acc = (__m256)__lasx_xvldi(0); + + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s); + + __m256i qx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10)); + qx = __lasx_xvor_v(qx, bxhi); + + const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[i].d)); + const __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0); + + const __m256 q = mul_sum_us8_pairs_float(qx, qy); + + acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; + #else // scalar float sumf = 0.0; @@ -4973,6 +5771,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r } *s = sumf; + #elif defined(__POWER9_VECTOR__) vector float vsumf0 = vec_splats(0.0f); @@ -5012,6 +5811,26 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + // Initialize accumulator with zeros + __m256 acc = (__m256)__lasx_xvldi(0); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); + __m256i qx = __lasx_xvld((const __m256i *)x[i].qs, 0); + __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0); + + const __m256 q = mul_sum_i8_pairs_float(qx, qy); + + // Multiply q with scale and accumulate + acc = __lasx_xvfmadd_s( d, q, acc ); + } + + *s = hsum_float_8(acc); + #else // scalar float sumf = 0.0; @@ -5416,8 +6235,6 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r vector signed int vsumi6 = vec_splats((int32_t)0); vector signed int vsumi7 = vec_splats((int32_t)0); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; for (int j = 0; j < QK_K/128; ++j) { __builtin_prefetch(q2, 0, 1); @@ -5508,6 +6325,71 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m3 = __lasx_xvreplgr2vr_b(3); + const __m128i m4 = __lsx_vreplgr2vr_b(0xF); + + __m256 acc = (__m256)__lasx_xvldi(0); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0); + const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4); + const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4); + const __m256i mins = lasx_ext8_16(mins8); + const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0)); + + acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc); + + const __m256i all_scales = lasx_ext8_16(scales8); + const __m128i l_scales = lasx_extracti128(all_scales, 0); + const __m128i h_scales = lasx_extracti128(all_scales, 1); + const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)}; + + __m256i sumi = __lasx_xvldi(0); + + for (int j = 0; j < QK_K/128; ++j) { + + const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32; + + const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + + const __m256i q2_0 = __lasx_xvand_v(q2bits, m3); + const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3); + const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3); + const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3); + + __m256i p0 = lasx_maddubs_h(q2_0, q8_0); + __m256i p1 = lasx_maddubs_h(q2_1, q8_1); + __m256i p2 = lasx_maddubs_h(q2_2, q8_2); + __m256i p3 = lasx_maddubs_h(q2_3, q8_3); + + p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0); + p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1); + p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2); + p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3); + + p0 = __lasx_xvadd_w(p0, p1); + p2 = __lasx_xvadd_w(p2, p3); + + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2)); + } + + acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc); + + } + + *s = hsum_float_8(acc); + #else float sumf = 0; @@ -5778,6 +6660,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = sumf; + #elif defined(__POWER9_VECTOR__) const vector signed char lowMask = vec_splats((signed char)0x3); const vector signed char lowScaleMask = vec_splats((signed char)0xF); @@ -5859,6 +6742,63 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m3 = __lasx_xvreplgr2vr_b(3); + + __m256 acc = (__m256)__lasx_xvldi(0); + + uint32_t ud, um; + const uint8_t * restrict db = (const uint8_t *)&ud; + const uint8_t * restrict mb = (const uint8_t *)&um; + + float summs = 0; + + // TODO: optimize this + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + ud = (sc[0] >> 0) & 0x0f0f0f0f; + um = (sc[0] >> 4) & 0x0f0f0f0f; + + int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; + summs += dmin * smin; + + const __m128i q2bits = __lsx_vld((const __m128i*)q2, 0); + const __m256i q2_0 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 2), q2bits), m3); + const __m256i q2_1 = __lasx_xvand_v(lasx_insertf128(__lsx_vsrli_h(q2bits, 6), __lsx_vsrli_h(q2bits, 4)), m3); + + const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); + const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); + + const __m256i p0 = lasx_maddubs_h(q2_0, q8_0); + const __m256i p1 = lasx_maddubs_h(q2_1, q8_1); + + const __m256i p_0 = lasx_ext16_32(lasx_extracti128(p0, 0)); + const __m256i p_1 = lasx_ext16_32(lasx_extracti128(p0, 1)); + const __m256i p_2 = lasx_ext16_32(lasx_extracti128(p1, 0)); + const __m256i p_3 = lasx_ext16_32(lasx_extracti128(p1, 1)); + + ft_union t0, t1, t2, t3; + t0.f = d * db[0]; + t1.f = d * db[1]; + t2.f = d * db[2]; + t3.f = d * db[3]; + acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t0.i), __lasx_xvffint_s_w(p_0), acc); + acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t1.i), __lasx_xvffint_s_w(p_1), acc); + acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t2.i), __lasx_xvffint_s_w(p_2), acc); + acc = __lasx_xvfmadd_s(__lasx_xvreplgr2vr_w(t3.i), __lasx_xvffint_s_w(p_3), acc); + } + + *s = hsum_float_8(acc) + summs; + #else float sumf = 0; @@ -6396,6 +7336,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r vector signed int vsumi6 = vec_splats((int32_t)0); vector signed int vsumi7 = vec_splats((int32_t)0); + const uint8_t * restrict q3 = x[i].qs; const int8_t * restrict q8 = y[i].qs; @@ -6507,16 +7448,117 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); -#else - // scalar version - // This function is written like this so the compiler can manage to vectorize most of it - // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the - // manually vectorized version above. Every other version I tried would run at least 4 times slower. - // The ideal situation would be if we could just write the code once, and the compiler would - // automatically produce the best possible set of machine instructions, instead of us having to manually - // write vectorized versions for AVX, ARM_NEON, etc. - int8_t aux8[QK_K]; +#elif defined __loongarch_asx + + const __m256i m3 = __lasx_xvreplgr2vr_b(3); + const __m256i mone = __lasx_xvreplgr2vr_b(1); + const __m128i m32 = __lsx_vreplgr2vr_b(32); + + __m256 acc = (__m256)__lasx_xvldi(0); + + uint32_t aux[3]; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + // Set up scales + memcpy(aux, x[i].scales, 12); + __m128i scales128 = lsx_set_w( + ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), + ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), + (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), + (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); + scales128 = __lsx_vsub_b(scales128, m32); + const __m256i all_scales = lasx_ext8_16(scales128); + const __m128i l_scales = lasx_extracti128(all_scales, 0); + const __m128i h_scales = lasx_extracti128(all_scales, 1); + const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)}; + + // high bit + const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0); + + // integer accumulator + __m256i sumi = __lasx_xvldi(0); + + int bit = 0; + int is = 0; + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + for (int j = 0; j < QK_K/128; ++j) { + // load low 2 bits + const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32; + + // prepare low and high bits + const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3); + const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3); + const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3); + const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3); + const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvandn_v(hbits, __lasx_xvslli_h(mone, bit)), bit), 2); + ++bit; + + // load Q8 quants + const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0); + __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1); + __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2); + __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3); + + __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0); + __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1); + __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2); + __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3); + + p16_0 = __lasx_xvsub_h(p16_0, q8s_0); + p16_1 = __lasx_xvsub_h(p16_1, q8s_1); + p16_2 = __lasx_xvsub_h(p16_2, q8s_2); + p16_3 = __lasx_xvsub_h(p16_3, q8s_3); + + // multiply with scales + p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0); + p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1); + p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2); + p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3); + + // accumulate + p16_0 = __lasx_xvadd_w(p16_0, p16_1); + p16_2 = __lasx_xvadd_w(p16_2, p16_3); + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2)); + } + // multiply with block scale and accumulate + acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME + } + + *s = hsum_float_8(acc); + +#else + // scalar version + // This function is written like this so the compiler can manage to vectorize most of it + // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the + // manually vectorized version above. Every other version I tried would run at least 4 times slower. + // The ideal situation would be if we could just write the code once, and the compiler would + // automatically produce the best possible set of machine instructions, instead of us having to manually + // write vectorized versions for AVX, ARM_NEON, etc. + + int8_t aux8[QK_K]; int16_t aux16[8]; float sums [8]; int32_t aux32[8]; @@ -6962,6 +8004,73 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined __loongarch_asx + + const __m256i m3 = __lasx_xvreplgr2vr_b(3); + const __m256i m1 = __lasx_xvreplgr2vr_b(1); + + __m256 acc = (__m256)__lasx_xvldi(0); + + uint64_t aux64; + + uint16_t aux16[2]; + const int8_t * aux8 = (const int8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const __m256i scale_0 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[2] - 8), __lasx_xvreplgr2vr_h(aux8[0] - 8)); + const __m256i scale_1 = lasx_insertf128(__lasx_xvreplgr2vr_h(aux8[3] - 8), __lasx_xvreplgr2vr_h(aux8[1] - 8)); + + memcpy(&aux64, x[i].hmask, 8); + + __m128i haux = __lsx_vinsgr2vr_d(haux, aux64, 0); + haux = __lsx_vinsgr2vr_d(haux, aux64 >> 1, 1); + __m256i q3h_0 = lasx_insertf128(__lsx_vsrli_h(haux, 2), haux); + __m256i q3h_1 = __lasx_xvsrli_h(q3h_0, 4); + q3h_0 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_0, m1), 2); + q3h_1 = __lasx_xvslli_h(__lasx_xvandn_v(q3h_1, m1), 2); + + // load low 2 bits + const __m128i q3bits = __lsx_vld((const __m128i*)q3, 0); + + // prepare low and high bits + const __m256i q3aux = lasx_insertf128(__lsx_vsrli_h(q3bits, 2), q3bits); + const __m256i q3l_0 = __lasx_xvand_v(q3aux, m3); + const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3aux, 4), m3); + + // load Q8 quants + const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); + const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + const __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0); + const __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1); + + __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0); + __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1); + + p16_0 = __lasx_xvsub_h(p16_0, q8s_0); + p16_1 = __lasx_xvsub_h(p16_1, q8s_1); + + // multiply with scales + p16_0 = lasx_madd_h(scale_0, p16_0); + p16_1 = lasx_madd_h(scale_1, p16_1); + + p16_0 = __lasx_xvadd_w(p16_0, p16_1); + + // multiply with block scale and accumulate + acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(p16_0), acc); + } + + *s = hsum_float_8(acc); + #else int8_t aux8[QK_K]; @@ -7450,8 +8559,69 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); -#else +#elif defined __loongarch_asx + + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + + __m256 acc = (__m256)__lasx_xvldi(0); + __m128 acc_m = (__m128)__lsx_vldi(0); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + memcpy(utmp, x[i].scales, 12); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0); + const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1)); + const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s); + acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m); + + const __m128i sc128 = lasx_extracti128(mins_and_scales, 0); + const __m256i scales = lasx_insertf128(sc128, sc128); + + __m256i sumi = __lasx_xvldi(0); + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32; + const __m256i q4l = __lasx_xvand_v(q4bits, m4); + const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4); + + const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + __m256i p16l = lasx_maddubs_h(q4l, q8l); + p16l = lasx_madd_h(scale_l, p16l); + + const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + __m256i p16h = lasx_maddubs_h(q4h, q8h); + p16h = lasx_madd_h(scale_h, p16h); + const __m256i sumj = __lasx_xvadd_w(p16l, p16h); + + sumi = __lasx_xvadd_w(sumi, sumj); + } + + __m256 vd = __lasx_xvreplfr2vr_s(d); + acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc); + } + acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee)); + __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0); + acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1); + + ft_union fi; + fi.i = __lsx_vpickve2gr_w(acc_m, 0); + *s = hsum_float_8(acc) + fi.f ; + +#else const uint8_t * scales = (const uint8_t*)&utmp[0]; const uint8_t * mins = (const uint8_t*)&utmp[2]; @@ -7797,6 +8967,51 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + + __m256 acc = (__m256)__lasx_xvldi(0); + + float summs = 0; + + uint16_t aux16[2]; + const uint8_t * scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; + const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; + const __m256 vd = __lasx_xvreplfr2vr_s(d); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); + const __m256i q4l = __lasx_xvand_v(q4bits, m4); + const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4); + + const __m256i q8l = __lasx_xvld((const __m256i*)(q8+ 0), 0); + const __m256i q8h = __lasx_xvld((const __m256i*)(q8+32), 0); + + const __m256i p16l = lasx_maddubs_h(q4l, q8l); + const __m256i p16h = lasx_maddubs_h(q4h, q8h); + + const __m256i p32l = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[0]), p16l); + acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32l), acc); + + const __m256i p32h = lasx_madd_h(__lasx_xvreplgr2vr_h(scales[1]), p16h); + acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(p32h), acc); + } + + *s = hsum_float_8(acc) - summs; + #else uint8_t aux8[QK_K]; @@ -8322,6 +9537,84 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + const __m128i mzero = __lsx_vldi(0); + const __m256i mone = __lasx_xvreplgr2vr_b(1); + + __m256 acc = (__m256)__lasx_xvldi(0); + + float summs = 0.f; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + +#if QK_K == 256 + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + memcpy(utmp, x[i].scales, 12); +#else + // TODO + const float d = 0, dmin = 0; +#endif + + const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0); + const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1)); + const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s); + const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero); + summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check + + const __m128i sc128 = lasx_extracti128(mins_and_scales, 0); + const __m256i scales = lasx_insertf128(sc128, sc128); + + const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0); + __m256i hmask = mone; + + __m256i sumi = __lasx_xvldi(0); + + int bit = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32; + + const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4); + const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4); + const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0); + hmask = __lasx_xvslli_h(hmask, 1); + + const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4); + const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrli_h(__lasx_xvand_v(hbits, hmask), bit++), 4); + const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1); + hmask = __lasx_xvslli_h(hmask, 1); + + const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + + __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0); + __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1); + + p16_0 = lasx_madd_h(scale_0, p16_0); + p16_1 = lasx_madd_h(scale_1, p16_1); + + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1)); + } + + __m256 vd = __lasx_xvreplfr2vr_s(d); + acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc); + } + + *s = hsum_float_8(acc) + summs; + #else const uint8_t * scales = (const uint8_t*)&utmp[0]; @@ -8696,6 +9989,52 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + const __m256i mone = __lasx_xvreplgr2vr_b(1); + + __m256 acc = (__m256)__lasx_xvldi(0); + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); + + const __m256i scale_l = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[1]), __lsx_vreplgr2vr_h(x[i].scales[0])); + const __m256i scale_h = lasx_insertf128(__lsx_vreplgr2vr_h(x[i].scales[3]), __lsx_vreplgr2vr_h(x[i].scales[2])); + + int64_t aux64; + memcpy(&aux64, x[i].qh, 8); + __m128i haux128 = __lsx_vinsgr2vr_d(haux128, aux64, 0); + haux128 = __lsx_vinsgr2vr_d(haux128, aux64 >> 1, 1); + const __m256i haux256 = lasx_insertf128(__lsx_vsrli_h(haux128, 2), haux128); + + const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvandn_v(haux256, mone), 4); + const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvandn_v(__lasx_xvsrli_h(haux256, 4), mone), 4); + + const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4); + const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4); + + const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); + const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); + + const __m256i p16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5l_0, q8_0)); + const __m256i p16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5l_1, q8_1)); + const __m256i s16_0 = lasx_madd_h(scale_l, lasx_maddubs_h(q5h_0, q8_0)); + const __m256i s16_1 = lasx_madd_h(scale_h, lasx_maddubs_h(q5h_1, q8_1)); + + const __m256i dot = __lasx_xvsub_w(__lasx_xvadd_w(p16_0, p16_1), __lasx_xvadd_w(s16_0, s16_1)); + + acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(dot), acc); + } + + *s = hsum_float_8(acc); + #else int8_t aux8[QK_K]; @@ -9271,35 +10610,113 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); -#else +#elif defined __loongarch_asx - int8_t aux8[QK_K]; - int16_t aux16[8]; - float sums [8]; - int32_t aux32[8]; - memset(sums, 0, 8*sizeof(float)); + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + const __m256i m2 = __lasx_xvreplgr2vr_b(3); + const __m256i m32s = __lasx_xvreplgr2vr_b(32); + + __m256 acc = (__m256)__lasx_xvldi(0); - float sumf = 0; for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const uint8_t * restrict q4 = x[i].ql; const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; - for (int j = 0; j < QK_K; j += 128) { - for (int l = 0; l < 32; ++l) { - a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; - a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; - a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; - a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; - } - a += 128; - q4 += 64; - qh += 32; - } - a = aux8; - int is = 0; - for (int j = 0; j < QK_K/16; ++j) { + const int8_t * restrict q8 = y[i].qs; + + const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0); + + __m256i sumi = __lasx_xvldi(0); + + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0)); + const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1)); + const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2)); + const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3)); + is += 4; + + const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32; + const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32; + const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32; + + const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4); + const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4); + const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4); + const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4); + + const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0); + const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1); + const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2); + const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3); + + const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + + __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0); + __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1); + __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2); + __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3); + + __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0); + __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1); + __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2); + __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3); + + p16_0 = __lasx_xvsub_h(p16_0, q8s_0); + p16_1 = __lasx_xvsub_h(p16_1, q8s_1); + p16_2 = __lasx_xvsub_h(p16_2, q8s_2); + p16_3 = __lasx_xvsub_h(p16_3, q8s_3); + + p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0); + p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1); + p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2); + p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3); + + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1)); + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3)); + } + + acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc); + } + + *s = hsum_float_8(acc); + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + } + a += 128; + q4 += 64; + qh += 32; + } + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/16; ++j) { int scale = x[i].scales[is++]; for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; @@ -9656,6 +11073,65 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r *s = vec_extract(vsumf0, 0); +#elif defined __loongarch_asx + + const __m256i m4 = __lasx_xvreplgr2vr_b(0xF); + const __m256i m2 = __lasx_xvreplgr2vr_b(3); + const __m256i m32s = __lasx_xvreplgr2vr_b(32); + + __m256 acc = (__m256)__lasx_xvldi(0); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m64 scales_1 = __lasx_xvreplgr2vr_b(x[i].scales[0]); + const __m64 scales_2 = __lasx_xvreplgr2vr_b(x[i].scales[1]); + const __m64 scales_3 = __lasx_xvreplgr2vr_b(x[i].scales[2]); + const __m64 scales_4 = __lasx_xvreplgr2vr_b(x[i].scales[3]); + + __m256i sumi = __lasx_xvldi(0); + + __m128i scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_1, 0); + scale_0 = __lsx_vinsgr2vr_d(scale_0, scales_2, 1); + __m128i scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_3, 0); + scale_1 = __lsx_vinsgr2vr_d(scale_1, scales_4, 1); + + const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); + const __m128i q4bitsH = __lsx_vld((const __m128i*)qh, 0); + + const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 2), q4bitsH), m2), 4); + const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(lasx_insertf128(__lasx_xvsrli_h(q4bitsH, 6), __lasx_xvsrli_h(q4bitsH, 4)), m2), 4); + + const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0); + const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_1); + + const __m256i q8_0 = __lasx_xvld((const __m256i*)(q8+ 0), 0); + const __m256i q8_1 = __lasx_xvld((const __m256i*)(q8+32), 0); + + __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0); + __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1); + + __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0); + __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1); + + p16_0 = __lasx_xvsub_h(p16_0, q8s_0); + p16_1 = __lasx_xvsub_h(p16_1, q8s_1); + + p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0); + p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1); + + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1)); + + acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc); + } + + *s = hsum_float_8(acc); + #else int8_t aux8[QK_K]; @@ -9697,7 +11173,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * r #endif -#if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) +#if defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx) static const int8_t keven_signs_q2xs[1024] = { 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, @@ -9927,6 +11403,49 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = 0.125f * vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[4]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; + + const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]); + const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]); + const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], + signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); + const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127], + signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]); + const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1); + const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2); + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); + const uint16_t ls1 = aux32[1] >> 28; + const uint16_t ls2 = aux32[3] >> 28; + const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1)); + const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1)); + sumi1 = __lasx_xvadd_w(sumi1, p1); + sumi2 = __lasx_xvadd_w(sumi2, p2); + } + + accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf); + } + + *s = 0.125f * hsum_float_8(accumf); + #else uint32_t aux32[2]; @@ -10201,6 +11720,181 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * *s = 0.125f * hsum_float_8(accumf); #endif +#elif defined(__loongarch_asx) + + const __m256i mone = __lasx_xvreplgr2vr_b(1); + static const char block_sign_shuffle_mask_1[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, + 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + }; + static const char block_sign_shuffle_mask_2[32] = { + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, + 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, + }; + static const uint8_t bit_selector_mask_bytes[32] = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0); + const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0); + const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0); + +#if QK_K == 64 + static const uint8_t k_bit_helper[16] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m128i bit_helper = __lsx_vld((const __m128i*)k_bit_helper, 0); + const __m128i m511 = __lsx_vreplgr2vr_h(511); + typedef union { + __m128i vec_index; + uint16_t index[8]; + } index_t; + + index_t idx; + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const __m128i q2_data = __lsx_vld((const __m128i*)x[i].qs, 0); + idx.vec_index = __lsx_vand_v(q2_data, m511); + + const __m128i partial_sign_bits = __lsx_vsrli_h(q2_data, 9); + const __m128i partial_sign_bits_upper = __lsx_vsrli_h(q2_data, 13); + const __m128i partial_sign_bits_for_counting = __lsx_vxor_v(partial_sign_bits, partial_sign_bits_upper); + + const __m128i odd_bits = lsx_shuffle_b(bit_helper, partial_sign_bits_for_counting); + const __m128i full_sign_bits = __lsx_vor_v(partial_sign_bits, odd_bits); + const __m256i full_signs = lasx_insertf128(full_sign_bits, full_sign_bits); + + const __m256i q8_1 = __lasx_xvld((const __m256i *)y[i].qs, 0); + const __m256i q8_2 = __lasx_xvld((const __m256i *)(y[i].qs+32), 0); + + const __m256i q2_1 = lasx_set_d(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]], + iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]); + const __m256i q2_2 = lasx_set_d(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]], + iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]); + __m256i signs; + signs = lasx_shuffle_b(full_signs, block_sign_shuffle_1); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1); + + signs = lasx_shuffle_b(full_signs, block_sign_shuffle_2); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2); + + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); + + const __m256i sc1 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[0] & 0xf)+1)); + const __m256i sc2 = lasx_insertf128(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), __lsx_vreplgr2vr_h(2*(x[i].scales[1] & 0xf)+1)); + + const __m256i sum = __lasx_xvadd_w(lasx_madd_h(sc1, dot1), lasx_madd_h(sc2, dot2)); + + accumf = __lasx_vfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sum), accumf); + } + + *s = 0.125f * hsum_float_8(accumf); +#else + + static const uint8_t k_bit_helper[32] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0); + const __m256i m511 = __lasx_xvreplgr2vr_h(511); + const __m128i m4 = __lsx_vreplgr2vr_b(0xf); + const __m128i m1 = __lsx_vreplgr2vr_b(1); + + uint64_t aux64; + + // somewhat hacky, but gives a significant boost in performance + __m256i aux_gindex; + const uint16_t * gindex = (const uint16_t *)&aux_gindex; + + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(&aux64, x[i].scales, 8); + __m128i stmp = __lsx_vreplgr2vr_d(aux64); + stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4)); + const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1); + + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) { + + const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16; + aux_gindex = __lasx_xvand_v(q2_data, m511); + + const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9); + const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13); + const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper); + + const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting); + const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits); + + const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + + const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]], + iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]); + const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]], + iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]); + const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]], + iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]); + const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]], + iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]); + + const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0); + const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1); + const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l); + const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h); + + __m256i signs; + signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1); + + signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2); + + signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3); + + signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2); + signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4); + + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); + const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3); + const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4); + + const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0))); + const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1))); + const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2))); + const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3))); + + sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1)); + sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2)); + sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3)); + sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4)); + } + + accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); +#endif + #elif defined(__POWER9_VECTOR__) vector float vsumf0 = vec_splats(0.0f); @@ -10618,6 +12312,81 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = 0.125f * vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + + const __m128i m4 = __lsx_vreplgr2vr_b(0xf); + const __m128i m1 = __lsx_vreplgr2vr_b(1); + + const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0); + const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0); + uint64_t aux64; + + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const int8_t * restrict q8 = y[i].qs; + + __m128i tmp1; + memcpy(&aux64, x[i].scales, 8); + tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0); + tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1); + const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1); + const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 + + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)], + iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)], + iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)], + iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]); + const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)], + iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)], + iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)], + iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]); + qs += 8; + + __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16)); + aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2); + const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2); + const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1); + + aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16)); + aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2); + const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2); + const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1 + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3 + + const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0))); + const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1))); + sumi1 = __lasx_xvadd_w(sumi1, p1); + sumi2 = __lasx_xvadd_w(sumi2, p2); + } + + accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf); + } + + *s = 0.125f * hsum_float_8(accumf); + #else float sumf = 0; @@ -10857,6 +12626,54 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = 0.25f * vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[2]; + + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict gas = x[i].qs + QK_K/4; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], + iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); + q3 += 8; + const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], + iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); + q3 += 8; + memcpy(aux32, gas, 8); gas += 8; + + const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127], + signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]); + const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], + signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); + const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1); + const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2); + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); + const uint16_t ls1 = aux32[0] >> 28; + const uint16_t ls2 = aux32[1] >> 28; + + const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1)); + const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1)); + sumi1 = __lasx_xvadd_w(sumi1, p1); + sumi2 = __lasx_xvadd_w(sumi2, p2); + } + + accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf); + } + + *s = 0.25f * hsum_float_8(accumf); + #else uint32_t aux32; @@ -11202,6 +13019,89 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0); + const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0); + + __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8); + const __m256i idx_mask = __lasx_xvreplgr2vr_w(256); + + typedef union { + __m256i vec[2]; + uint32_t index[16]; + } index_t; + + index_t idx; + + __m256 accumf = (__m256)__lasx_xvldi(0); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)x[i].signs; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16; + idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]); + idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]); + idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask); + idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask); + idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0))); + idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1))); + + // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange. + //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4); + //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4); + const __m256i q2_1 = lasx_set_w( + iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]], + iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]] + ); + const __m256i q2_2 = lasx_set_w( + iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]], + iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]] + ); + + __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16)); + aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2); + const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2); + const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1); + + aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16)); + aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2); + const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2); + const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); + const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); + const uint16_t ls1 = x[i].scales[ib32/2] & 0xf; + const uint16_t ls2 = x[i].scales[ib32/2] >> 4; + const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1)); + const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1)); + sumi1 = __lasx_xvadd_w(sumi1, p1); + sumi2 = __lasx_xvadd_w(sumi2, p2); + } + + accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf); + } + + *s = hsum_float_8(accumf); + #else float sumf = 0.f; @@ -11249,12 +13149,22 @@ void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * } -#ifdef __AVX2__ +#if defined(__AVX2__) static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { const __m256i ax = _mm256_sign_epi8(x, x); const __m256i sy = _mm256_sign_epi8(y, x); return _mm256_maddubs_epi16(ax, sy); } +#elif defined(__loongarch_asx) +static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { + const __m256i ax = __lasx_xvsigncov_b(x, x); + const __m256i sy = __lasx_xvsigncov_b(x, y); + __m256i tmp1, tmp2, tmp3; + tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy); + tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy); + tmp3 = __lasx_xvadd_h(tmp1, tmp2); + return __lasx_xvsat_h(tmp3, 15); +} #endif void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { @@ -11463,6 +13373,62 @@ void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + __m256 accum = (__m256)__lasx_xvldi(0); + float accum1 = 0; + for (int i = 0; i < nb; ++i) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint16_t * qh = x[i].qh; + + __m256i sumi = __lasx_xvldi(0); + int sumi1 = 0; + for (int ib = 0; ib < QK_K/32; ib += 2) { + __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0); + q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1); + q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2); + q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3); + + __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0); + q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1); + q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2); + q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3); + + qs += 8; + const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32; + + const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1); + const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2); + const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1; + const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1; + + __m256i tmp1, tmp5, tmp6; + tmp1 = __lasx_xvreplgr2vr_h(ls1); + tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1); + tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1); + const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6); + + tmp1 = __lasx_xvreplgr2vr_h(ls2); + tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1); + tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1); + const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6); + + sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2)); + sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1 + + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2; + } + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum); + accum1 += d * sumi1; + } + + *s = hsum_float_8(accum) + IQ1S_DELTA * accum1; + #else float sumf = 0; @@ -11864,6 +13830,39 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined (__loongarch_asx) + + const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0); + const __m128i m4b = __lsx_vreplgr2vr_b(0x0f); + const __m256i mone = __lasx_xvreplgr2vr_h(1); + + __m256 accum1 = (__m256)__lasx_xvldi(0); + __m256 accum2 = (__m256)__lasx_xvldi(0); + for (int ib = 0; ib < nb; ib += 2) { + const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[0].qs, 0); + const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[1].qs, 0); + const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[0].qs, 0); + const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[1].qs, 0); + const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)), + lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b))); + const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)), + lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b))); + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const __m256i p_1 = lasx_madd_h(p16_1, mone); + const __m256i p_2 = lasx_madd_h(p16_2, mone); + accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)), + __lasx_xvffint_s_w(p_1), accum1); + accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)), + __lasx_xvffint_s_w(p_2), accum2); + + y += 2; + x += 2; + } + + *s = hsum_float_8(__lasx_xvfadd_s(accum1, accum2)); + #else float sumf = 0; for (int ib = 0; ib < nb; ++ib) { @@ -12074,6 +14073,80 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8)); *s = vec_extract(vsumf0, 0); + +#elif defined(__loongarch_asx) + + const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0); + const __m128i m4b = __lsx_vreplgr2vr_b(0x0f); + + __m256 accum = (__m256)__lasx_xvldi(0); + __m256i tmp1; + __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask; + + mask_8f = __lsx_vreplgr2vr_b(0x8f); + for (int ibl = 0; ibl < nb; ++ibl) { + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + uint16_t sh = x[ibl].scales_h; + __m256i sumi1 = __lasx_xvldi(0); + __m256i sumi2 = __lasx_xvldi(0); + __m128i zero = __lsx_vldi(0); + for (int ib = 0; ib < QK_K/32; ib += 2) { + const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16; + const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16; + const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32; + tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f); + tmp0 = __lsx_vori_b(tmp2, 0x10); + mask = __lsx_vsle_b(zero, tmp2); + tmp3 = __lsx_vand_v(tmp0, mask); + tmp3 = __lsx_vshuf_b(values128, zero, tmp3); + + tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f); + tmp0 = __lsx_vori_b(tmp2, 0x10); + mask = __lsx_vsle_b(zero, tmp2); + tmp4 = __lsx_vand_v(tmp0, mask); + tmp4 = __lsx_vshuf_b(values128, zero, tmp4); + + const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4); + + tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f); + tmp0 = __lsx_vori_b(tmp2, 0x10); + mask = __lsx_vsle_b(zero, tmp2); + tmp3 = __lsx_vand_v(tmp0, mask); + tmp3 = __lsx_vshuf_b(values128, zero, tmp3); + + tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f); + tmp0 = __lsx_vori_b(tmp2, 0x10); + mask = __lsx_vsle_b(zero, tmp2); + tmp4 = __lsx_vand_v(tmp0, mask); + tmp4 = __lsx_vshuf_b(values128, zero, tmp4); + + const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4); + + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32; + const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32; + sh >>= 4; + __m256i tmp5, tmp6; + tmp1 = __lasx_xvreplgr2vr_h(ls1); + tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1); + tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1); + const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6); + tmp1 = __lasx_xvreplgr2vr_h(ls2); + tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1); + tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1); + const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6); + sumi1 = __lasx_xvadd_w(p_1, sumi1); + sumi2 = __lasx_xvadd_w(p_2, sumi2); + } + accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d), + __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum); + } + + *s = hsum_float_8(accum); + #else float sumf = 0; for (int ibl = 0; ibl < nb; ++ibl) { diff --git a/ggml.c b/ggml.c index 53da231ee061c..4bd911528586b 100644 --- a/ggml.c +++ b/ggml.c @@ -1523,6 +1523,195 @@ static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE +#elif defined(__loongarch_asx) + +#define GGML_SIMD + +// F32 LASX +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 8 + +#define GGML_F32x8 __m256 +#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0) +#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x)) +#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0) +#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0) +#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a) +#define GGML_F32x8_ADD __lasx_xvfadd_s +#define GGML_F32x8_MUL __lasx_xvfmul_s +#define GGML_F32x8_REDUCE(res, x) \ +do { \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \ + } \ + float *tmp_p = (float *)&x[0]; \ + res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \ +} while (0) +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x8 +#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x8_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD +#define GGML_F32_VEC_STORE GGML_F32x8_STORE +#define GGML_F32_VEC_FMA GGML_F32x8_FMA +#define GGML_F32_VEC_ADD GGML_F32x8_ADD +#define GGML_F32_VEC_MUL GGML_F32x8_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE + +// F16 LASX + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 8 + +// F16 arithmetic is not supported by AVX, so we use F32 instead + +#define GGML_F32Cx8 __m256 +#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0) +#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x)) + +static inline __m256 __lasx_f32cx8_load(ggml_fp16_t *x) { + float tmp[8]; + + for (int i = 0; i < 8; i++) { + tmp[i] = GGML_FP16_TO_FP32(x[i]); + } + + return (__m256)__lasx_xvld(tmp, 0); +} +static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) { + float arr[8]; + + __lasx_xvst(y, arr, 0); + + for (int i = 0; i < 8; i++) + x[i] = GGML_FP32_TO_FP16(arr[i]); +} +#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x) +#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y) + +#define GGML_F32Cx8_FMA GGML_F32x8_FMA +#define GGML_F32Cx8_ADD __lasx_xvfadd_s +#define GGML_F32Cx8_MUL __lasx_xvfmul_s +#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE + +#define GGML_F16_VEC GGML_F32Cx8 +#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE + +#elif defined(__loongarch_sx) + +#define GGML_SIMD + +// F32 LSX + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 __m128 +#define GGML_F32x4_ZERO __lsx_vldi(0) +#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0) +#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0) +#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0) +#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a) +#define GGML_F32x4_ADD __lsx_vfadd_s +#define GGML_F32x4_MUL __lsx_vfmul_s +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \ + } \ + __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \ + tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \ + tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \ + const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \ + tmp = __lsx_vsrli_d((__m128i)t0, 32); \ + tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \ + tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \ + res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 LSX + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 4 + +static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) { + float tmp[4]; + + tmp[0] = GGML_FP16_TO_FP32(x[0]); + tmp[1] = GGML_FP16_TO_FP32(x[1]); + tmp[2] = GGML_FP16_TO_FP32(x[2]); + tmp[3] = GGML_FP16_TO_FP32(x[3]); + + return __lsx_vld(tmp, 0); +} + +static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) { + float arr[4]; + + __lsx_vst(y, arr, 0); + + x[0] = GGML_FP32_TO_FP16(arr[0]); + x[1] = GGML_FP32_TO_FP16(arr[1]); + x[2] = GGML_FP32_TO_FP16(arr[2]); + x[3] = GGML_FP32_TO_FP16(arr[3]); +} + +#define GGML_F32Cx4 __m128 +#define GGML_F32Cx4_ZERO __lsx_vldi(0) +#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0) +#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x) +#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y) +#define GGML_F32Cx4_FMA GGML_F32x4_FMA +#define GGML_F32Cx4_ADD __lsx_vfadd_s +#define GGML_F32Cx4_MUL __lsx_vfmul_s +#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + +#define GGML_F16_VEC GGML_F32Cx4 +#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE + #endif // GGML_F32_ARR / GGML_F16_ARR From 213e90ed73f8ac3cd3026dc3f086beae0d414f96 Mon Sep 17 00:00:00 2001 From: Herman Semenov Date: Mon, 20 May 2024 07:33:21 +0000 Subject: [PATCH 07/18] ggml-opencl, llama: using reserve() if count already known (#7272) --- ggml-opencl.cpp | 7 +++++-- llama.cpp | 3 +++ 2 files changed, 8 insertions(+), 2 deletions(-) diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 880a14958cec5..922f248376ced 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1,4 +1,4 @@ -#include "ggml.h" +#include "ggml.h" #include "ggml-opencl.h" #include "ggml-backend-impl.h" @@ -1835,7 +1835,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); } - for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) { + int64_t i12 = i02 * r2; + int64_t e12 = i12 + r2; + events.reserve(e12 - i12); + for (; i12 < e12; i12++) { if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel // copy src1 to device events.emplace_back(); diff --git a/llama.cpp b/llama.cpp index ca3e9fcc0c249..2025e45582b49 100644 --- a/llama.cpp +++ b/llama.cpp @@ -16162,6 +16162,7 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const } // make tensors + cvec.tensors.reserve(model.hparams.n_layer); cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 for (size_t il = 1; il < model.hparams.n_layer; il++) { struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft); @@ -16170,6 +16171,8 @@ static bool llama_control_vector_init(struct llama_control_vector & cvec, const } // allocate tensors / buffers and zero + cvec.ctxs.reserve(ctx_map.size()); + cvec.bufs.reserve(ctx_map.size()); for (auto it : ctx_map) { ggml_backend_buffer_type_t buft = it.first; ggml_context * ctx = it.second; From 26cd4237bc499f7144d76f440aa775d749b170bb Mon Sep 17 00:00:00 2001 From: Bingan <70050083+binganao@users.noreply.github.com> Date: Mon, 20 May 2024 17:55:34 +0800 Subject: [PATCH 08/18] Update README.md (#7410) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 4abfd6d7e9dac..47d41ebfc1c2e 100644 --- a/README.md +++ b/README.md @@ -301,7 +301,7 @@ cd llama.cpp ### Build -In order to build llama.cpp you have three different options. +In order to build llama.cpp you have four different options. - Using `make`: - On Linux or MacOS: From 6bf9b66fa3f263ca2175dcb5f6d0a658581e1dfb Mon Sep 17 00:00:00 2001 From: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com> Date: Mon, 20 May 2024 12:08:23 +0100 Subject: [PATCH 09/18] [SYCL] Update SYCL upscale operation (#7321) * Update SYCL upscale operation * Formatting * Remove messages --- ggml-sycl.cpp | 65 +++++++++++++++++++++++++++------------------------ 1 file changed, 35 insertions(+), 30 deletions(-) diff --git a/ggml-sycl.cpp b/ggml-sycl.cpp index 19d22d63753ab..eac8f55796735 100644 --- a/ggml-sycl.cpp +++ b/ggml-sycl.cpp @@ -3847,21 +3847,27 @@ static void concat_f32(const float *x,const float *y, float *dst, const int ne } } -static void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor, - const sycl::nd_item<3> &item_ct1) { - int ne0 = ne00 * scale_factor; - int nidx = item_ct1.get_local_id(2) + - item_ct1.get_group(2) * item_ct1.get_local_range(2); - if (nidx >= ne0) { +static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01, + const int nb02, const int nb03, const int ne10, const int ne11, + const int ne12, const int ne13, const float sf0, const float sf1, + const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) { + int index = item_ct1.get_local_id(0) + + item_ct1.get_group(0) * item_ct1.get_local_range(0); + if (index >= ne10 * ne11 * ne12 * ne13) { return; } // operation - int i00 = nidx / scale_factor; - int i01 = item_ct1.get_group(1) / scale_factor; - int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02; - int offset_dst = nidx + item_ct1.get_group(1) * ne0 + - item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1); - dst[offset_dst] = x[offset_src]; + int i10 = index % ne10; + int i11 = (index / ne10) % ne11; + int i12 = (index / (ne10 * ne11)) % ne12; + int i13 = (index / (ne10 * ne11 * ne12)) % ne13; + + int i00 = i10 / sf0; + int i01 = i11 / sf1; + int i02 = i12 / sf2; + int i03 = i13 / sf3; + + dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00); } static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02, @@ -10085,18 +10091,17 @@ static void concat_f32_sycl(const float *x, const float *y, float *dst, }); } -static void upscale_f32_sycl(const float *x, float *dst, const int ne00, - const int ne01, const int ne02, - const int scale_factor, dpct::queue_ptr stream) { - int ne0 = (ne00 * scale_factor); - int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE; - sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks); +static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01, + const int nb02, const int nb03, const int ne10, const int ne11, + const int ne12, const int ne13, const float sf0, const float sf1, + const float sf2, const float sf3, dpct::queue_ptr stream) { + int dst_size = ne10 * ne11 * ne12 * ne13; + int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE; + sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE); stream->parallel_for( - sycl::nd_range<3>(gridDim * - sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE), - sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)), - [=](sycl::nd_item<3> item_ct1) { - upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1); + sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), + [=](sycl::nd_item<1> item_ct1) { + upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1); }); } @@ -13985,15 +13990,15 @@ inline void ggml_sycl_op_upscale(const ggml_tensor *src0, GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); - GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors - -#pragma message("TODO: generalize upscale operator") -#pragma message(" https://github.com/ggerganov/ggml/pull/814") - GGML_ASSERT(false && "TODO: generalize upscale operator"); - const int scale_factor = dst->op_params[0]; + const float sf0 = (float)dst->ne[0]/src0->ne[0]; + const float sf1 = (float)dst->ne[1]/src0->ne[1]; + const float sf2 = (float)dst->ne[2]/src0->ne[2]; + const float sf3 = (float)dst->ne[3]/src0->ne[3]; - upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream); + upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], + dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, + main_stream); (void) src1; (void) dst; From 3bc10cb485dd7efa4da6c64e73ad0c9e2bfe0821 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 20 May 2024 15:10:03 +0300 Subject: [PATCH 10/18] server : fix temperature + disable some tests (#7409) * server : fix temperature * server : disable tests relying on parallel determinism * ci : change server Debug -> RelWithDebInfo --- .github/workflows/server.yml | 7 +------ examples/server/tests/features/results.feature | 17 ++++++++--------- 2 files changed, 9 insertions(+), 15 deletions(-) diff --git a/.github/workflows/server.yml b/.github/workflows/server.yml index 217af67cfd420..0789efd18a1ab 100644 --- a/.github/workflows/server.yml +++ b/.github/workflows/server.yml @@ -33,13 +33,10 @@ jobs: strategy: matrix: sanitizer: [ADDRESS, THREAD, UNDEFINED] - build_type: [Debug] + build_type: [RelWithDebInfo] include: - build_type: Release sanitizer: "" - - build_type: Debug - sanitizer: THREAD - disabled_on_pr: true fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken steps: @@ -103,10 +100,8 @@ jobs: -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ; cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server - - name: Tests id: server_integration_tests - if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }} run: | cd examples/server/tests PORT=8888 ./tests.sh diff --git a/examples/server/tests/features/results.feature b/examples/server/tests/features/results.feature index 4ab8ad20c2680..e8e1b54147b05 100644 --- a/examples/server/tests/features/results.feature +++ b/examples/server/tests/features/results.feature @@ -13,7 +13,7 @@ Feature: Results Scenario Outline: consistent results with same seed Given slots - And 0.0 temperature + And 1.0 temperature Then the server is starting Then the server is healthy @@ -27,7 +27,8 @@ Feature: Results Examples: | n_slots | | 1 | - | 2 | + # FIXME: unified KV cache nondeterminism + # | 2 | Scenario Outline: different results with different seed Given slots @@ -73,14 +74,13 @@ Feature: Results Examples: | n_parallel | temp | | 1 | 0.0 | - | 2 | 0.0 | - | 4 | 0.0 | | 1 | 1.0 | - # FIXME: These tests fail on master. - # Problems: unified KV cache (except for CPU backend with LLAMA_NO_LLAMAFILE=1), SIMD nondeterminism. + # FIXME: unified KV cache nondeterminism # See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227 # and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574 # and https://github.com/ggerganov/llama.cpp/pull/7347 . + # | 2 | 0.0 | + # | 4 | 0.0 | # | 2 | 1.0 | # | 4 | 1.0 | @@ -108,12 +108,11 @@ Feature: Results Examples: | n_slots | n_kv | n_predict | n_parallel | | 4 | 1024 | 1 | 1 | - | 4 | 1024 | 1 | 4 | - # FIXME: These tests fail on master. - # Problems: unified KV cache (except for CPU backend with LLAMA_NO_LLAMAFILE=1), SIMD nondeterminism. + # FIXME: unified KV cache nondeterminism # See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227 # and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574 # and https://github.com/ggerganov/llama.cpp/pull/7347 . + # | 4 | 1024 | 1 | 4 | # | 4 | 1024 | 100 | 1 | # This test still fails even the above patches; the first token probabilities are already different. # | 4 | 1024 | 100 | 4 | From db10f01310beea8a1ef7798651b9d692fd1149d0 Mon Sep 17 00:00:00 2001 From: Radoslav Gerganov Date: Mon, 20 May 2024 16:36:55 +0300 Subject: [PATCH 11/18] rpc : track allocated buffers (#7411) * rpc : track allocated buffers ref: #7407 * rpc : pack rpc_tensor tightly --- ggml-rpc.cpp | 229 +++++++++++++++++++++++++++++++++++++++------------ 1 file changed, 176 insertions(+), 53 deletions(-) diff --git a/ggml-rpc.cpp b/ggml-rpc.cpp index 4a9bfa52d87b1..cc1d3ace1ddac 100644 --- a/ggml-rpc.cpp +++ b/ggml-rpc.cpp @@ -56,6 +56,7 @@ struct socket_t { }; // ggml_tensor is serialized into rpc_tensor +#pragma pack(push, 1) struct rpc_tensor { uint64_t id; uint32_t type; @@ -71,6 +72,7 @@ struct rpc_tensor { uint64_t data; char name[GGML_MAX_NAME]; }; +#pragma pack(pop) // RPC commands enum rpc_cmd { @@ -340,23 +342,6 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) { return result; } -static ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) { - ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type, - tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); - for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { - result->nb[i] = tensor->nb[i]; - } - result->buffer = reinterpret_cast(tensor->buffer); - result->op = (ggml_op) tensor->op; - for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { - result->op_params[i] = tensor->op_params[i]; - } - result->flags = tensor->flags; - result->data = reinterpret_cast(tensor->data); - ggml_set_name(result, tensor->name); - return result; -} - GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { UNUSED(buffer); if (ggml_is_quantized(tensor->type)) { @@ -465,13 +450,15 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer memcpy(&remote_ptr, output.data(), sizeof(remote_ptr)); size_t remote_size; memcpy(&remote_size, output.data() + sizeof(uint64_t), sizeof(remote_size)); - - ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, - ggml_backend_rpc_buffer_interface, - new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"}, - remote_size); - - return buffer; + if (remote_ptr != 0) { + ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft, + ggml_backend_rpc_buffer_interface, + new ggml_backend_rpc_buffer_context{buft_ctx->sock, {}, remote_ptr, "RPC"}, + remote_size); + return buffer; + } else { + return nullptr; + } } static size_t get_alignment(const std::shared_ptr & sock) { @@ -658,7 +645,7 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) { } } #endif - GGML_PRINT_DEBUG("Connecting to %s\n", endpoint); + fprintf(stderr, "Connecting to %s\n", endpoint); std::string host; int port; if (!parse_endpoint(endpoint, host, port)) { @@ -731,22 +718,61 @@ GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint // RPC server-side implementation -static void rpc_alloc_buffer(ggml_backend_t backend, const std::vector & input, std::vector & output) { +class rpc_server { +public: + rpc_server(ggml_backend_t backend) : backend(backend) {} + ~rpc_server(); + + bool alloc_buffer(const std::vector & input, std::vector & output); + void get_alignment(std::vector & output); + void get_max_size(std::vector & output); + bool buffer_get_base(const std::vector & input, std::vector & output); + bool free_buffer(const std::vector & input); + bool buffer_clear(const std::vector & input); + bool set_tensor(const std::vector & input); + bool get_tensor(const std::vector & input, std::vector & output); + bool copy_tensor(const std::vector & input, std::vector & output); + bool graph_compute(const std::vector & input, std::vector & output); + +private: + ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor); + ggml_tensor * create_node(uint64_t id, + struct ggml_context * ctx, + const std::unordered_map & tensor_ptrs, + std::unordered_map & tensor_map); + + + ggml_backend_t backend; + std::unordered_set buffers; +}; + +bool rpc_server::alloc_buffer(const std::vector & input, std::vector & output) { // input serialization format: | size (8 bytes) | + if (input.size() != sizeof(uint64_t)) { + return false; + } uint64_t size; memcpy(&size, input.data(), sizeof(size)); ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); - uint64_t remote_ptr = reinterpret_cast(buffer); - uint64_t remote_size = buffer->size; - GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size); + uint64_t remote_ptr = 0; + uint64_t remote_size = 0; + if (buffer != nullptr) { + remote_ptr = reinterpret_cast(buffer); + remote_size = buffer->size; + GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, size, remote_ptr, remote_size); + buffers.insert(buffer); + } else { + GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> failed\n", __func__, size); + } // output serialization format: | remote_ptr (8 bytes) | remote_size (8 bytes) | output.resize(2*sizeof(uint64_t), 0); memcpy(output.data(), &remote_ptr, sizeof(remote_ptr)); memcpy(output.data() + sizeof(uint64_t), &remote_size, sizeof(remote_size)); + return true; } -static void rpc_get_alignment(ggml_backend_t backend, std::vector & output) { +void rpc_server::get_alignment(std::vector & output) { ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); size_t alignment = ggml_backend_buft_get_alignment(buft); GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment); @@ -755,7 +781,7 @@ static void rpc_get_alignment(ggml_backend_t backend, std::vector & out memcpy(output.data(), &alignment, sizeof(alignment)); } -static void rpc_get_max_size(ggml_backend_t backend, std::vector & output) { +void rpc_server::get_max_size(std::vector & output) { ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend); size_t max_size = ggml_backend_buft_get_max_size(buft); GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size); @@ -764,41 +790,90 @@ static void rpc_get_max_size(ggml_backend_t backend, std::vector & outp memcpy(output.data(), &max_size, sizeof(max_size)); } -static void rpc_buffer_get_base(const std::vector & input, std::vector & output) { +bool rpc_server::buffer_get_base(const std::vector & input, std::vector & output) { // input serialization format: | remote_ptr (8 bytes) | + if (input.size() != sizeof(uint64_t)) { + return false; + } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + if (buffers.find(buffer) == buffers.end()) { + GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + return false; + } void * base = ggml_backend_buffer_get_base(buffer); // output serialization format: | base_ptr (8 bytes) | uint64_t base_ptr = reinterpret_cast(base); output.resize(sizeof(uint64_t), 0); memcpy(output.data(), &base_ptr, sizeof(base_ptr)); + return true; } -static void rpc_free_buffer(const std::vector & input) { +bool rpc_server::free_buffer(const std::vector & input) { // input serialization format: | remote_ptr (8 bytes) | + if (input.size() != sizeof(uint64_t)) { + return false; + } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, remote_ptr); ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + if (buffers.find(buffer) == buffers.end()) { + GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + return false; + } ggml_backend_buffer_free(buffer); + buffers.erase(buffer); + return true; } -static void rpc_buffer_clear(const std::vector & input) { +bool rpc_server::buffer_clear(const std::vector & input) { // input serialization format: | remote_ptr (8 bytes) | value (1 byte) | + if (input.size() != sizeof(uint64_t) + sizeof(uint8_t)) { + return false; + } uint64_t remote_ptr; memcpy(&remote_ptr, input.data(), sizeof(remote_ptr)); uint8_t value; memcpy(&value, input.data() + sizeof(uint64_t), sizeof(value)); GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, remote_ptr, value); ggml_backend_buffer_t buffer = reinterpret_cast(remote_ptr); + if (buffers.find(buffer) == buffers.end()) { + GGML_PRINT_DEBUG("[%s] buffer not found\n", __func__); + return false; + } ggml_backend_buffer_clear(buffer, value); + return true; } -static void rpc_set_tensor(const std::vector & input) { +ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) { + ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type, + tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]); + for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) { + result->nb[i] = tensor->nb[i]; + } + result->buffer = reinterpret_cast(tensor->buffer); + if (result->buffer && buffers.find(result->buffer) == buffers.end()) { + return nullptr; + } + result->op = (ggml_op) tensor->op; + for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) { + result->op_params[i] = tensor->op_params[i]; + } + result->flags = tensor->flags; + result->data = reinterpret_cast(tensor->data); + ggml_set_name(result, tensor->name); + return result; +} + + +bool rpc_server::set_tensor(const std::vector & input) { // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) | + if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) { + return false; + } const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); uint64_t offset; memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); @@ -811,14 +886,23 @@ static void rpc_set_tensor(const std::vector & input) { }; struct ggml_context * ctx = ggml_init(params); ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor); + if (tensor == nullptr) { + GGML_PRINT_DEBUG("[%s] error deserializing tensor\n", __func__); + ggml_free(ctx); + return false; + } GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size); const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset); ggml_backend_tensor_set(tensor, data, offset, size); ggml_free(ctx); + return true; } -static void rpc_get_tensor(const std::vector & input, std::vector & output) { +bool rpc_server::get_tensor(const std::vector & input, std::vector & output) { // serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) | + if (input.size() != sizeof(rpc_tensor) + 2*sizeof(uint64_t)) { + return false; + } const rpc_tensor * in_tensor = (const rpc_tensor *)input.data(); uint64_t offset; memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset)); @@ -832,15 +916,24 @@ static void rpc_get_tensor(const std::vector & input, std::vectorbuffer, tensor->data, offset, size); // output serialization format: | data (size bytes) | output.resize(size, 0); ggml_backend_tensor_get(tensor, output.data(), offset, size); ggml_free(ctx); + return true; } -static void rpc_copy_tensor(const std::vector & input, std::vector & output) { +bool rpc_server::copy_tensor(const std::vector & input, std::vector & output) { // serialization format: | rpc_tensor src | rpc_tensor dst | + if (input.size() != 2*sizeof(rpc_tensor)) { + return false; + } const rpc_tensor * rpc_src = (const rpc_tensor *)input.data(); const rpc_tensor * rpc_dst = (const rpc_tensor *)(input.data() + sizeof(rpc_src)); @@ -852,18 +945,24 @@ static void rpc_copy_tensor(const std::vector & input, std::vectorbuffer: %p, dst->buffer: %p\n", __func__, (void*)src->buffer, (void*)dst->buffer); bool result = ggml_backend_buffer_copy_tensor(src, dst); // output serialization format: | result (1 byte) | output.resize(1, 0); output[0] = result; ggml_free(ctx); + return true; } -static struct ggml_tensor * create_node(uint64_t id, - struct ggml_context * ctx, - const std::unordered_map & tensor_ptrs, - std::unordered_map & tensor_map) { +ggml_tensor * rpc_server::create_node(uint64_t id, + struct ggml_context * ctx, + const std::unordered_map & tensor_ptrs, + std::unordered_map & tensor_map) { if (id == 0) { return nullptr; } @@ -872,6 +971,9 @@ static struct ggml_tensor * create_node(uint64_t id, } const rpc_tensor * tensor = tensor_ptrs.at(id); struct ggml_tensor * result = deserialize_tensor(ctx, tensor); + if (result == nullptr) { + return nullptr; + } tensor_map[id] = result; for (int i = 0; i < GGML_MAX_SRC; i++) { result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map); @@ -881,14 +983,23 @@ static struct ggml_tensor * create_node(uint64_t id, return result; } -static void rpc_graph_compute(ggml_backend_t backend, const std::vector & input, std::vector & output) { +bool rpc_server::graph_compute(const std::vector & input, std::vector & output) { // serialization format: // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) | + if (input.size() < sizeof(uint32_t)) { + return false; + } uint32_t n_nodes; memcpy(&n_nodes, input.data(), sizeof(n_nodes)); + if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) { + return false; + } const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes)); uint32_t n_tensors; memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors)); + if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) { + return false; + } const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors)); GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors); @@ -914,9 +1025,17 @@ static void rpc_graph_compute(ggml_backend_t backend, const std::vector output.resize(1, 0); output[0] = status; ggml_free(ctx); + return true; +} + +rpc_server::~rpc_server() { + for (auto buffer : buffers) { + ggml_backend_buffer_free(buffer); + } } static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) { + rpc_server server(backend); while (true) { uint8_t cmd; if (!recv_data(sockfd, &cmd, 1)) { @@ -932,45 +1051,46 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre if (!recv_data(sockfd, input.data(), input_size)) { break; } + bool ok = true; switch (cmd) { case ALLOC_BUFFER: { - rpc_alloc_buffer(backend, input, output); + ok = server.alloc_buffer(input, output); break; } case GET_ALIGNMENT: { - rpc_get_alignment(backend, output); + server.get_alignment(output); break; } case GET_MAX_SIZE: { - rpc_get_max_size(backend, output); + server.get_max_size(output); break; } case BUFFER_GET_BASE: { - rpc_buffer_get_base(input, output); + ok = server.buffer_get_base(input, output); break; } case FREE_BUFFER: { - rpc_free_buffer(input); + ok = server.free_buffer(input); break; } case BUFFER_CLEAR: { - rpc_buffer_clear(input); + ok = server.buffer_clear(input); break; } case SET_TENSOR: { - rpc_set_tensor(input); + ok = server.set_tensor(input); break; } case GET_TENSOR: { - rpc_get_tensor(input, output); + ok = server.get_tensor(input, output); break; } case COPY_TENSOR: { - rpc_copy_tensor(input, output); + ok = server.copy_tensor(input, output); break; } case GRAPH_COMPUTE: { - rpc_graph_compute(backend, input, output); + ok = server.graph_compute(input, output); break; } case GET_DEVICE_MEMORY: { @@ -982,9 +1102,12 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre } default: { fprintf(stderr, "Unknown command: %d\n", cmd); - return; + ok = false; } } + if (!ok) { + break; + } uint64_t output_size = output.size(); if (!send_data(sockfd, &output_size, sizeof(output_size))) { break; From 20385cebcc4bb3f6dd10f989573c11864d70d53d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Mon, 20 May 2024 18:15:38 +0200 Subject: [PATCH 12/18] perplexity: update README FP16 results [no ci] (#7413) --- examples/perplexity/README.md | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/examples/perplexity/README.md b/examples/perplexity/README.md index c2a3c5ce9fdb9..33a46d1a2e38b 100644 --- a/examples/perplexity/README.md +++ b/examples/perplexity/README.md @@ -42,10 +42,13 @@ In addition to the KL divergence the following statistics are calculated with `- Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16. The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat). +Note: the FP16 logits used for the calculation of all metrics other than perplexity are stored in a binary file between runs. +In order to save space this file does **not** contain the exact same FP32 logits but instead casts them to 16 bit unsigned integers (with some scaling). +So the "f16" results are to be understood as the difference resulting only from this downcast. | Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp | |--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------| -| f16 | None | 14.97 | 6.233160 ± 0.037828 | - | - | - | - | +| f16 | None | 14.97 | 6.233160 ± 0.037828 | 0.001524 ± 0.000755 | 0.000551 ± 0.000002 | 0.001 ± 0.002 % | 0.787 ± 0.004 % | | q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % | | q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % | | q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % | From fabf30b4c4fca32e116009527180c252919ca922 Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Mon, 20 May 2024 19:35:28 +0300 Subject: [PATCH 13/18] llama : remove Persimmon (#7408) * llama : remove Persimmon * requirements : remove --- README.md | 1 - convert-hf-to-gguf.py | 39 --- convert-persimmon-to-gguf.py | 143 --------- gguf-py/gguf/constants.py | 19 -- llama.cpp | 280 ------------------ requirements.txt | 1 - ...requirements-convert-persimmon-to-gguf.txt | 2 - 7 files changed, 485 deletions(-) delete mode 100755 convert-persimmon-to-gguf.py delete mode 100644 requirements/requirements-convert-persimmon-to-gguf.txt diff --git a/README.md b/README.md index 47d41ebfc1c2e..f4088c05e6eee 100644 --- a/README.md +++ b/README.md @@ -107,7 +107,6 @@ Typically finetunes of the base models below are supported as well. - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila) - [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) -- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410) - [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417) - [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553) - [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index bd303150ae6b9..d534b5163bbfd 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1148,45 +1148,6 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter return tensors -@Model.register("PersimmonForCausalLM") -class PersimmonModel(Model): - model_arch = gguf.MODEL_ARCH.PERSIMMON - - def set_gguf_parameters(self): - block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers")) - head_count = self.hparams["num_attention_heads"] - head_count_kv = head_count - hidden_size = self.hparams["hidden_size"] - - self.gguf_writer.add_name('persimmon-8b-chat') - self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) - self.gguf_writer.add_embedding_length(hidden_size) - self.gguf_writer.add_block_count(block_count) - self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) - - # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller - # than the head size? - # ref: https://github.com/ggerganov/llama.cpp/pull/4889 - # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count) - self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2) - - self.gguf_writer.add_head_count(head_count) - self.gguf_writer.add_head_count_kv(head_count_kv) - self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) - self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"]) - - def set_vocab(self): - self._set_vocab_sentencepiece() - # self.gguf_writer.add_bos_token_id(71013) - # self.gguf_writer.add_eos_token_id(71013) - - def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool: - del name, new_name, bid, n_dims # unused - - # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?) - return True - - @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM") class StableLMModel(Model): model_arch = gguf.MODEL_ARCH.STABLELM diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py deleted file mode 100755 index 07dcade747a5a..0000000000000 --- a/convert-persimmon-to-gguf.py +++ /dev/null @@ -1,143 +0,0 @@ -#!/usr/bin/env python3 -from __future__ import annotations - -import logging -import argparse -import os -import sys -from pathlib import Path -from pprint import pprint - -import torch -from sentencepiece import SentencePieceProcessor - -if 'NO_LOCAL_GGUF' not in os.environ: - sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) -import gguf - -logger = logging.getLogger("persimmon-to-gguf") - - -def _flatten_dict(dct, tensors, prefix=None): - assert isinstance(dct, dict) - for key in dct.keys(): - new_prefix = prefix + '.' + key if prefix is not None else key - if isinstance(dct[key], torch.Tensor): - tensors[new_prefix] = dct[key] - elif isinstance(dct[key], dict): - _flatten_dict(dct[key], tensors, new_prefix) - else: - raise ValueError(type(dct[key])) - return None - - -def _get_sentencepiece_tokenizer_info(dir_model: Path): - tokenizer_path = dir_model / 'adept_vocab.model' - logger.info('getting sentencepiece tokenizer from', tokenizer_path) - tokenizer = SentencePieceProcessor(str(tokenizer_path)) - logger.info('adding tokens') - tokens: list[bytes] = [] - scores: list[float] = [] - toktypes: list[int] = [] - - for i in range(tokenizer.vocab_size()): - text: bytes - score: float - - piece = tokenizer.id_to_piece(i) - text = piece.encode("utf-8") - score = tokenizer.get_score(i) - - toktype = 1 - if tokenizer.is_unknown(i): - toktype = 2 - if tokenizer.is_control(i): - toktype = 3 - if tokenizer.is_unused(i): - toktype = 5 - if tokenizer.is_byte(i): - toktype = 6 - - tokens.append(text) - scores.append(score) - toktypes.append(toktype) - pass - return tokens, scores, toktypes - - -def main(): - parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file") - parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") - parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file") - parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release") - parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory") - parser.add_argument("--verbose", action="store_true", help="increase output verbosity") - args = parser.parse_args() - logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO) - sys.path.append(str(args.adept_inference_dir)) - persimmon_model = torch.load(args.ckpt_path) - hparams = persimmon_model['args'] - pprint(hparams) - tensors: dict[str, torch.Tensor] = {} - _flatten_dict(persimmon_model['model'], tensors, None) - - arch = gguf.MODEL_ARCH.PERSIMMON - gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch]) - - block_count = hparams.num_layers - head_count = hparams.num_attention_heads - head_count_kv = head_count - ctx_length = hparams.seq_length - hidden_size = hparams.hidden_size - - gguf_writer.add_name('persimmon-8b-chat') - gguf_writer.add_context_length(ctx_length) - gguf_writer.add_embedding_length(hidden_size) - gguf_writer.add_block_count(block_count) - gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size) - # ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443 - gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2) - gguf_writer.add_head_count(head_count) - gguf_writer.add_head_count_kv(head_count_kv) - gguf_writer.add_rope_freq_base(hparams.rotary_emb_base) - gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon) - - tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir) - gguf_writer.add_tokenizer_model('llama') - gguf_writer.add_tokenizer_pre('default') - gguf_writer.add_token_list(tokens) - gguf_writer.add_token_scores(scores) - gguf_writer.add_token_types(toktypes) - gguf_writer.add_bos_token_id(71013) - gguf_writer.add_eos_token_id(71013) - - tensor_map = gguf.get_tensor_name_map(arch, block_count) - logger.info(tensor_map) - for name in tensors.keys(): - data_torch = tensors[name] - if name.endswith(".self_attention.rotary_emb.inv_freq"): - continue - old_dtype = data_torch.dtype - # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?) - data = data_torch.to(torch.float32).squeeze().numpy() - new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) - if new_name is None: - raise ValueError(f"Can not map tensor '{name}'") - - n_dims = len(data.shape) - logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}") - gguf_writer.add_tensor(new_name, data) - logger.info("gguf: write header") - gguf_writer.write_header_to_file() - logger.info("gguf: write metadata") - gguf_writer.write_kv_data_to_file() - logger.info("gguf: write tensors") - gguf_writer.write_tensors_to_file() - - gguf_writer.close() - - logger.info(f"gguf: model successfully exported to '{args.outfile}'") - - -if __name__ == '__main__': - main() diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 978fcada3b42c..692120f4d64b0 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -115,7 +115,6 @@ class MODEL_ARCH(IntEnum): GPTNEOX = auto() MPT = auto() STARCODER = auto() - PERSIMMON = auto() REFACT = auto() BERT = auto() NOMIC_BERT = auto() @@ -193,7 +192,6 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.GPTNEOX: "gptneox", MODEL_ARCH.MPT: "mpt", MODEL_ARCH.STARCODER: "starcoder", - MODEL_ARCH.PERSIMMON: "persimmon", MODEL_ARCH.REFACT: "refact", MODEL_ARCH.BERT: "bert", MODEL_ARCH.NOMIC_BERT: "nomic-bert", @@ -426,20 +424,6 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], - MODEL_ARCH.PERSIMMON: [ - MODEL_TENSOR.TOKEN_EMBD, - MODEL_TENSOR.OUTPUT, - MODEL_TENSOR.OUTPUT_NORM, - MODEL_TENSOR.ATTN_NORM, - MODEL_TENSOR.ATTN_QKV, - MODEL_TENSOR.ATTN_OUT, - MODEL_TENSOR.FFN_NORM, - MODEL_TENSOR.FFN_DOWN, - MODEL_TENSOR.FFN_UP, - MODEL_TENSOR.ATTN_Q_NORM, - MODEL_TENSOR.ATTN_K_NORM, - MODEL_TENSOR.ATTN_ROT_EMBD, - ], MODEL_ARCH.REFACT: [ MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.OUTPUT_NORM, @@ -756,9 +740,6 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, ], - MODEL_ARCH.PERSIMMON: [ - MODEL_TENSOR.ROPE_FREQS, - ], MODEL_ARCH.QWEN: [ MODEL_TENSOR.ROPE_FREQS, MODEL_TENSOR.ATTN_ROT_EMBD, diff --git a/llama.cpp b/llama.cpp index 2025e45582b49..863961f157e81 100644 --- a/llama.cpp +++ b/llama.cpp @@ -202,7 +202,6 @@ enum llm_arch { LLM_ARCH_GPTNEOX, LLM_ARCH_MPT, LLM_ARCH_STARCODER, - LLM_ARCH_PERSIMMON, LLM_ARCH_REFACT, LLM_ARCH_BERT, LLM_ARCH_NOMIC_BERT, @@ -239,7 +238,6 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_MPT, "mpt" }, { LLM_ARCH_BAICHUAN, "baichuan" }, { LLM_ARCH_STARCODER, "starcoder" }, - { LLM_ARCH_PERSIMMON, "persimmon" }, { LLM_ARCH_REFACT, "refact" }, { LLM_ARCH_BERT, "bert" }, { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, @@ -595,23 +593,6 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, - { - LLM_ARCH_PERSIMMON, - { - { LLM_TENSOR_TOKEN_EMBD, "token_embd"}, - { LLM_TENSOR_OUTPUT_NORM, "output_norm"}, - { LLM_TENSOR_OUTPUT, "output"}, - { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"}, - { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"}, - { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"}, - { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, - { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, - { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"}, - { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"}, - { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"}, - { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"}, - }, - }, { LLM_ARCH_MPT, { @@ -3967,14 +3948,6 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; - case LLM_ARCH_PERSIMMON: - { - ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); - switch (hparams.n_layer) { - case 36: model.type = e_model::MODEL_8B; break; - default: model.type = e_model::MODEL_UNKNOWN; - } - } break; case LLM_ARCH_REFACT: { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); @@ -5221,47 +5194,6 @@ static bool llm_load_tensors( layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; - case LLM_ARCH_PERSIMMON: - { - model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - - { - model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); - model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); - } - - for (int i = 0; i < n_layer; ++i) { - ggml_context * ctx_layer = ctx_for_layer(i); - ggml_context * ctx_split = ctx_for_layer_split(i); - - auto & layer = model.layers[i]; - - layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - - layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); - layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - - layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - - layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); - layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - - layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); - layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); - - layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - - layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}); - layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}); - - layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}); - layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}); - } - } break; case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: { @@ -7923,213 +7855,6 @@ struct llm_build_context { return gf; } - struct ggml_cgraph * build_persimmon() { - struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); - - const int64_t n_embd_head = hparams.n_embd_head_v; - GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); - GGML_ASSERT(n_embd_head/2 == hparams.n_rot); - - struct ggml_tensor * cur; - struct ggml_tensor * inpL; - - inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); - - // inp_pos - contains the positions - struct ggml_tensor * inp_pos = build_inp_pos(); - - // KQ_mask (mask for 1 head, it will be broadcasted to all heads) - struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); - - for (int il = 0; il < n_layer; ++il) { - struct ggml_tensor * residual = inpL; - - cur = llm_build_norm(ctx0, inpL, hparams, - model.layers[il].attn_norm, - model.layers[il].attn_norm_b, - LLM_NORM, cb, il); - cb(cur, "attn_norm", il); - - // self attention - { - cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); - cb(cur, "wqkv", il); - - cur = ggml_add(ctx0, cur, model.layers[il].bqkv); - cb(cur, "bqkv", il); - - // split qkv - GGML_ASSERT(n_head_kv == n_head); - - struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens); - cb(tmpqkv, "tmpqkv", il); - - struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2)); - cb(tmpqkv_perm, "tmpqkv", il); - - struct ggml_tensor * tmpq = ggml_view_3d( - ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, - ggml_element_size(tmpqkv_perm) * n_embd_head, - ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, - 0 - ); - cb(tmpq, "tmpq", il); - - struct ggml_tensor * tmpk = ggml_view_3d( - ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, - ggml_element_size(tmpqkv_perm) * n_embd_head, - ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, - ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens - ); - cb(tmpk, "tmpk", il); - - // Q/K Layernorm - tmpq = llm_build_norm(ctx0, tmpq, hparams, - model.layers[il].attn_q_norm, - model.layers[il].attn_q_norm_b, - LLM_NORM, cb, il); - cb(tmpq, "tmpq", il); - - tmpk = llm_build_norm(ctx0, tmpk, hparams, - model.layers[il].attn_k_norm, - model.layers[il].attn_k_norm_b, - LLM_NORM, cb, il); - cb(tmpk, "tmpk", il); - - // RoPE the first n_rot of q/k, pass the other half, and concat. - struct ggml_tensor * qrot = ggml_view_3d( - ctx0, tmpq, n_rot, n_head, n_tokens, - ggml_element_size(tmpq) * n_embd_head, - ggml_element_size(tmpq) * n_embd_head * n_head, - 0 - ); - cb(qrot, "qrot", il); - - struct ggml_tensor * krot = ggml_view_3d( - ctx0, tmpk, n_rot, n_head, n_tokens, - ggml_element_size(tmpk) * n_embd_head, - ggml_element_size(tmpk) * n_embd_head * n_head, - 0 - ); - cb(krot, "krot", il); - - // get the second half of tmpq, e.g tmpq[n_rot:, :, :] - struct ggml_tensor * qpass = ggml_view_3d( - ctx0, tmpq, n_rot, n_head, n_tokens, - ggml_element_size(tmpq) * n_embd_head, - ggml_element_size(tmpq) * n_embd_head * n_head, - ggml_element_size(tmpq) * n_rot - ); - cb(qpass, "qpass", il); - - struct ggml_tensor * kpass = ggml_view_3d( - ctx0, tmpk, n_rot, n_head, n_tokens, - ggml_element_size(tmpk) * n_embd_head, - ggml_element_size(tmpk) * n_embd_head * n_head, - ggml_element_size(tmpk) * n_rot - ); - cb(kpass, "kpass", il); - - struct ggml_tensor * qrotated = ggml_rope_custom( - ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(qrotated, "qrotated", il); - - struct ggml_tensor * krotated = ggml_rope_custom( - ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, - freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow - ); - cb(krotated, "krotated", il); - - // ggml currently only supports concatenation on dim=2 - // so we need to permute qrot, qpass, concat, then permute back. - qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3)); - cb(qrotated, "qrotated", il); - - krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3)); - cb(krotated, "krotated", il); - - qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3)); - cb(qpass, "qpass", il); - - kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3)); - cb(kpass, "kpass", il); - - struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass); - cb(Qcur, "Qcur", il); - - struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3)); - cb(Q, "Q", il); - - Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3)); - cb(Kcur, "Kcur", il); - - struct ggml_tensor * Vcur = ggml_view_3d( - ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, - ggml_element_size(tmpqkv_perm) * n_embd_head, - ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, - ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2 - ); - cb(Vcur, "Vcur", il); - - cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf, - model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); - } - - if (il == n_layer - 1) { - // skip computing output for unused tokens - struct ggml_tensor * inp_out_ids = build_inp_out_ids(); - cur = ggml_get_rows(ctx0, cur, inp_out_ids); - residual = ggml_get_rows(ctx0, residual, inp_out_ids); - } - - struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); - cb(ffn_inp, "ffn_inp", il); - - // feed-forward network - { - cur = llm_build_norm(ctx0, ffn_inp, hparams, - model.layers[il].ffn_norm, - model.layers[il].ffn_norm_b, - LLM_NORM, cb, il); - cb(cur, "ffn_norm", il); - - cur = llm_build_ffn(ctx0, cur, - model.layers[il].ffn_up, model.layers[il].ffn_up_b, - NULL, NULL, - model.layers[il].ffn_down, model.layers[il].ffn_down_b, - NULL, - LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); - cb(cur, "ffn_out", il); - } - - cur = ggml_add(ctx0, cur, ffn_inp); - cb(cur, "l_out", il); - - inpL = cur; - } - - cur = inpL; - - cur = llm_build_norm(ctx0, cur, hparams, - model.output_norm, - model.output_norm_b, - LLM_NORM, cb, -1); - cb(cur, "result_norm", -1); - - cur = ggml_mul_mat(ctx0, model.output, cur); - cb(cur, "result_output", -1); - - ggml_build_forward_expand(gf, cur); - - return gf; - } - struct ggml_cgraph * build_refact() { struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); @@ -10898,10 +10623,6 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_starcoder(); } break; - case LLM_ARCH_PERSIMMON: - { - result = llm.build_persimmon(); - } break; case LLM_ARCH_REFACT: { result = llm.build_refact(); @@ -15992,7 +15713,6 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_FALCON: case LLM_ARCH_GROK: case LLM_ARCH_DBRX: - case LLM_ARCH_PERSIMMON: case LLM_ARCH_BERT: case LLM_ARCH_NOMIC_BERT: case LLM_ARCH_STABLELM: diff --git a/requirements.txt b/requirements.txt index e7d14e16ac73c..43f82dc2e600d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -9,4 +9,3 @@ -r ./requirements/requirements-convert-hf-to-gguf.txt -r ./requirements/requirements-convert-hf-to-gguf-update.txt -r ./requirements/requirements-convert-llama-ggml-to-gguf.txt --r ./requirements/requirements-convert-persimmon-to-gguf.txt diff --git a/requirements/requirements-convert-persimmon-to-gguf.txt b/requirements/requirements-convert-persimmon-to-gguf.txt deleted file mode 100644 index 6ac4026107fbe..0000000000000 --- a/requirements/requirements-convert-persimmon-to-gguf.txt +++ /dev/null @@ -1,2 +0,0 @@ --r ./requirements-convert.txt -torch~=2.1.1 From 917dc8cfa67a72fb7c8bf7392270da3bf4833af4 Mon Sep 17 00:00:00 2001 From: jaime-m-p <167997752+jaime-m-p@users.noreply.github.com> Date: Mon, 20 May 2024 20:15:57 +0200 Subject: [PATCH 14/18] Tokenizer SPM fixes for phi-3 and llama-spm (#7375) * Update brute force test: special tokens * Fix added tokens - Try to read 'added_tokens.json'. - Try to read 'tokenizer_config.json'. - Try to read 'tokenizer.json'. * Fix special tokens rtrim Co-authored-by: Georgi Gerganov * server : fix test regexes --- convert-hf-to-gguf.py | 32 +++++++++++++++++ examples/server/tests/features/server.feature | 10 +++--- .../server/tests/features/slotsave.feature | 4 +-- llama.cpp | 31 +++++++++++++--- tests/test-tokenizer-random.py | 35 +++++++++++++++++-- 5 files changed, 98 insertions(+), 14 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index d534b5163bbfd..8937a4981f446 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1740,6 +1740,38 @@ def set_vocab(self): scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + tokenizer_config_file = self.dir_model / 'tokenizer_config.json' + if tokenizer_config_file.is_file(): + with open(tokenizer_config_file, "r", encoding="utf-8") as f: + tokenizer_config_json = json.load(f) + added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {}) + for token_id, foken_data in added_tokens_decoder.items(): + token_id = int(token_id) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + assert(tokens[token_id] == token) + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + + tokenizer_file = self.dir_model / 'tokenizer.json' + if tokenizer_file.is_file(): + with open(tokenizer_file, "r", encoding="utf-8") as f: + tokenizer_json = json.load(f) + added_tokens = tokenizer_json.get("added_tokens", []) + for foken_data in added_tokens: + token_id = int(foken_data["id"]) + token = foken_data["content"].encode("utf-8") + if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: + assert(tokens[token_id] == token) + tokens[token_id] = token + scores[token_id] = -1000.0 + toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED + if foken_data.get("special"): + toktypes[token_id] = SentencePieceTokenTypes.CONTROL + self.gguf_writer.add_tokenizer_model("llama") self.gguf_writer.add_tokenizer_pre("default") self.gguf_writer.add_token_list(tokens) diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature index d21c09135243a..048cfad06bdb5 100644 --- a/examples/server/tests/features/server.feature +++ b/examples/server/tests/features/server.feature @@ -37,8 +37,8 @@ Feature: llama.cpp server Examples: Prompts | prompt | n_predict | re_content | n_prompt | n_predicted | truncated | - | I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not | - | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not | + | I believe the meaning of life is | 8 | (read\|going\|pretty)+ | 18 | 8 | not | + | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 45 | 64 | not | Scenario: Completion prompt truncated Given a prompt: @@ -67,8 +67,8 @@ Feature: llama.cpp server Examples: Prompts | model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated | - | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not | - | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | | + | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 76 | 8 | disabled | not | + | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|fireplace)+ | -1 | 64 | enabled | | Scenario Outline: OAI Compatibility w/ response format @@ -84,7 +84,7 @@ Feature: llama.cpp server | response_format | n_predicted | re_content | | {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" | | {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] | - | {"type": "json_object"} | 10 | \{ " Jacky. | + | {"type": "json_object"} | 10 | \{ " Saragine. | Scenario: Tokenize / Detokenize diff --git a/examples/server/tests/features/slotsave.feature b/examples/server/tests/features/slotsave.feature index 1c281c0741afe..ba4ecb6f53ee2 100644 --- a/examples/server/tests/features/slotsave.feature +++ b/examples/server/tests/features/slotsave.feature @@ -26,7 +26,7 @@ Feature: llama.cpp server slot management # Since we have cache, this should only process the last tokens Given a user prompt "What is the capital of Germany?" And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special) + Then 24 tokens are predicted matching (Thank|special|Lily) And 7 prompt tokens are processed # Loading the original cache into slot 0, # we should only be processing 1 prompt token and get the same output @@ -41,7 +41,7 @@ Feature: llama.cpp server slot management Given a user prompt "What is the capital of Germany?" And using slot id 1 And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special) + Then 24 tokens are predicted matching (Thank|special|Lily) And 1 prompt tokens are processed Scenario: Erase Slot diff --git a/llama.cpp b/llama.cpp index 863961f157e81..e2ebe17528105 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4553,7 +4553,8 @@ static void llm_load_vocab( (t.first == "<|eot_id|>" || t.first == "<|im_end|>" || t.first == "<|end|>" || - t.first == "" + t.first == "" || + t.first == "<|endoftext|>" ) ) { vocab.special_eot_id = t.second; @@ -12502,6 +12503,10 @@ static std::vector llama_tokenize_internal(const llama_vocab & output.push_back(vocab.special_bos_id); } + static const bool rtrim = true; //TODO: as param + bool is_prev_special = false; + bool special_token_rtrim = false; + for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer @@ -12511,9 +12516,21 @@ static std::vector llama_tokenize_internal(const llama_vocab & // and passing 'add space prefix' as bool argument // auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); - if (&fragment == &fragment_buffer.front()) { - if (vocab.add_space_prefix) { - raw_text = " " + raw_text; // prefix with space if the first token is not special + + if (special_token_rtrim) { + size_t num_whitespaces = 0; + while (isspace(raw_text[num_whitespaces])) { + num_whitespaces++; + } + if (num_whitespaces == raw_text.size()) { + continue; // skip if all whitespaces + } + raw_text = raw_text.substr(num_whitespaces); + } + + if (vocab.add_space_prefix) { + if (!output.size() || is_prev_special) { // prefix with space if first token + raw_text = " " + raw_text; } } @@ -12525,6 +12542,12 @@ static std::vector llama_tokenize_internal(const llama_vocab & tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); + is_prev_special = true; + // phi-3 special tokens without rtrim, works fine for llama-spm too + special_token_rtrim = rtrim + && fragment.token != vocab.special_bos_id + && fragment.token != vocab.special_unk_id + && fragment.token != vocab.special_eos_id; } } diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index d5a6f185fbcd5..1166ac1e43bda 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -153,11 +153,23 @@ def generator_custom_text_edge_cases() -> Iterator[str]: 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'Cửa Việt', # llama-3, ignore_merges = true - 'a', # TODO: Phi-3 fail + 'a', # Phi-3 fail + '<|endoftext|>' # Phi-3 fail 'a\na', # TODO: Bert fail ] +def generator_random_special_tokens(special_tokens:list[str], iterations=100) -> Iterator[str]: + special_tokens = set(special_tokens) + special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "", ""]) + special_tokens = list(sorted(special_tokens)) + rand = random.Random() + for m in range(iterations): + rand.seed(m) + words = rand.choices(special_tokens, k=500) + yield "".join(words) + + def generator_vocab_words(vocab: list[str]) -> Iterator[str]: """Brute force check all vocab words""" yield from vocab @@ -289,14 +301,31 @@ def func_tokenize1(text: str): vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text()) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer.all_special_tokens, 10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000)) - test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 10_000)) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000)) # test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL model.free() if __name__ == "__main__": - main() + # main() + + path_tokenizers = "./models/tokenizers/" + path_vocab_format = "./models/ggml-vocab-%s.gguf" + + # import os + # tokenizers = os.listdir(path_tokenizers) + tokenizers = [ + "llama-spm", # SPM + "phi-3", # SPM + ] + + for tokenizer in tokenizers: + print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa + vocab_file = path_vocab_format % tokenizer + dir_tokenizer = path_tokenizers + "/" + tokenizer + main([vocab_file, dir_tokenizer, "--verbose"]) From d7e852c1bc8e85bf62a6f1aede08cd2de723404a Mon Sep 17 00:00:00 2001 From: jaime-m-p <167997752+jaime-m-p@users.noreply.github.com> Date: Tue, 21 May 2024 14:39:48 +0200 Subject: [PATCH 15/18] Tokenizer SPM fixes for phi-3 and llama-spm (bugfix) (#7425) * Update brute force test: add_special * Update brute force test: default values for add_bos_token and add_eos_token * Enable rtrim when pre-inserting BOS Co-authored-by: Georgi Gerganov * Revert "server : fix test regexes" --- convert-hf-to-gguf.py | 4 ++-- examples/server/tests/features/server.feature | 10 ++++----- .../server/tests/features/slotsave.feature | 4 ++-- llama.cpp | 9 ++++---- tests/test-tokenizer-random.py | 22 +++++++++++-------- 5 files changed, 27 insertions(+), 22 deletions(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 8937a4981f446..1acf45bf2f48e 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1749,7 +1749,7 @@ def set_vocab(self): token_id = int(token_id) token = foken_data["content"].encode("utf-8") if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: - assert(tokens[token_id] == token) + assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED @@ -1765,7 +1765,7 @@ def set_vocab(self): token_id = int(foken_data["id"]) token = foken_data["content"].encode("utf-8") if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN: - assert(tokens[token_id] == token) + assert tokens[token_id] == token tokens[token_id] = token scores[token_id] = -1000.0 toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED diff --git a/examples/server/tests/features/server.feature b/examples/server/tests/features/server.feature index 048cfad06bdb5..d21c09135243a 100644 --- a/examples/server/tests/features/server.feature +++ b/examples/server/tests/features/server.feature @@ -37,8 +37,8 @@ Feature: llama.cpp server Examples: Prompts | prompt | n_predict | re_content | n_prompt | n_predicted | truncated | - | I believe the meaning of life is | 8 | (read\|going\|pretty)+ | 18 | 8 | not | - | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 45 | 64 | not | + | I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not | + | Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not | Scenario: Completion prompt truncated Given a prompt: @@ -67,8 +67,8 @@ Feature: llama.cpp server Examples: Prompts | model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated | - | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 76 | 8 | disabled | not | - | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|fireplace)+ | -1 | 64 | enabled | | + | llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not | + | codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | | Scenario Outline: OAI Compatibility w/ response format @@ -84,7 +84,7 @@ Feature: llama.cpp server | response_format | n_predicted | re_content | | {"type": "json_object", "schema": {"const": "42"}} | 5 | "42" | | {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] | - | {"type": "json_object"} | 10 | \{ " Saragine. | + | {"type": "json_object"} | 10 | \{ " Jacky. | Scenario: Tokenize / Detokenize diff --git a/examples/server/tests/features/slotsave.feature b/examples/server/tests/features/slotsave.feature index ba4ecb6f53ee2..1c281c0741afe 100644 --- a/examples/server/tests/features/slotsave.feature +++ b/examples/server/tests/features/slotsave.feature @@ -26,7 +26,7 @@ Feature: llama.cpp server slot management # Since we have cache, this should only process the last tokens Given a user prompt "What is the capital of Germany?" And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special|Lily) + Then 24 tokens are predicted matching (Thank|special) And 7 prompt tokens are processed # Loading the original cache into slot 0, # we should only be processing 1 prompt token and get the same output @@ -41,7 +41,7 @@ Feature: llama.cpp server slot management Given a user prompt "What is the capital of Germany?" And using slot id 1 And a completion request with no api error - Then 24 tokens are predicted matching (Thank|special|Lily) + Then 24 tokens are predicted matching (Thank|special) And 1 prompt tokens are processed Scenario: Erase Slot diff --git a/llama.cpp b/llama.cpp index e2ebe17528105..d26fe559a2051 100644 --- a/llama.cpp +++ b/llama.cpp @@ -12498,15 +12498,16 @@ static std::vector llama_tokenize_internal(const llama_vocab & // tokenizer.encode('', add_special_tokens=True) returns [1] // tokenizer.encode('', add_special_tokens=False) returns [] + static const bool rtrim = true; //TODO: as param + bool is_prev_special = false; + bool special_token_rtrim = false; + if (add_special && vocab.special_add_bos != 0) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); + is_prev_special = true; } - static const bool rtrim = true; //TODO: as param - bool is_prev_special = false; - bool special_token_rtrim = false; - for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { // without adding this leading whitespace, we do not get the same results as the original tokenizer diff --git a/tests/test-tokenizer-random.py b/tests/test-tokenizer-random.py index 1166ac1e43bda..7e1b656e5f5fc 100644 --- a/tests/test-tokenizer-random.py +++ b/tests/test-tokenizer-random.py @@ -154,19 +154,22 @@ def generator_custom_text_edge_cases() -> Iterator[str]: '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM) 'Cửa Việt', # llama-3, ignore_merges = true 'a', # Phi-3 fail - '<|endoftext|>' # Phi-3 fail + '<|endoftext|>', # Phi-3 fail 'a\na', # TODO: Bert fail ] -def generator_random_special_tokens(special_tokens:list[str], iterations=100) -> Iterator[str]: - special_tokens = set(special_tokens) +def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]: + special_tokens = set(tokenizer.all_special_tokens) special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "", ""]) special_tokens = list(sorted(special_tokens)) rand = random.Random() for m in range(iterations): rand.seed(m) words = rand.choices(special_tokens, k=500) + if tokenizer.add_bos_token: # skip spam warning of double BOS + while words and words[0] == tokenizer.bos_token: + words.pop(0) yield "".join(words) @@ -290,18 +293,19 @@ def main(argv: list[str] = None): model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096)) tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer) - def func_tokenize2(text: str): - return tokenizer.encode(text, add_special_tokens=False) - - parse_special = all(len(func_tokenize2(t)) == 1 for t in tokenizer.all_special_tokens) + tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True) + tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False) def func_tokenize1(text: str): - return model.tokenize(text, add_special=False, parse_special=parse_special) + return model.tokenize(text, add_special=True, parse_special=True) + + def func_tokenize2(text: str): + return tokenizer.encode(text, add_special_tokens=True) vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True))) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text()) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases()) - test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer.all_special_tokens, 10_000)) + test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000)) test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000)) From d8ee90222791afff2ab666ded4cb6195fd94cced Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20G=C3=A4=C3=9Fler?= Date: Tue, 21 May 2024 16:02:12 +0200 Subject: [PATCH 16/18] CUDA: deduplicate mmq code (#7397) --- ggml-cuda/mmq.cu | 1237 ++++++++++------------------------------------ 1 file changed, 271 insertions(+), 966 deletions(-) diff --git a/ggml-cuda/mmq.cu b/ggml-cuda/mmq.cu index 7948f1b1237fa..5b540d375031b 100644 --- a/ggml-cuda/mmq.cu +++ b/ggml-cuda/mmq.cu @@ -9,6 +9,135 @@ typedef float (*vec_dot_q_mul_mat_cuda_t)( const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc, const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k); typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v); +typedef void (mul_mat_q_t)( + const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst); + +struct mmq_arch_config_t { + int x; + int y; + int nwarps; +}; + +struct mmq_config_t { + mmq_arch_config_t rdna2; + mmq_arch_config_t rdna1; + mmq_arch_config_t ampere; + mmq_arch_config_t pascal; +}; + +constexpr mmq_config_t MMQ_CONFIG_Q4_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q4_1 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_1 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q8_0 = { +// x y nwarps + { 64, 128, 8}, + { 64, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q2_K = { +// x y nwarps + { 64, 128, 8}, + {128, 32, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q3_K = { +// x y nwarps + {128, 64, 8}, + { 32, 128, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + {128, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q4_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q5_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 128, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; +constexpr mmq_config_t MMQ_CONFIG_Q6_K = { +// x y nwarps + { 64, 128, 8}, + { 32, 64, 8}, +#ifdef CUDA_USE_TENSOR_CORES + { 4, 32, 4}, +#else + { 64, 64, 4}, +#endif // CUDA_USE_TENSOR_CORES + { 64, 64, 8}, +}; + +// ------------------------------------------------------------ template static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { GGML_UNUSED(x_qh); @@ -943,25 +1072,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat( return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]); } -#define MMQ_X_Q4_0_RDNA2 64 -#define MMQ_Y_Q4_0_RDNA2 128 -#define NWARPS_Q4_0_RDNA2 8 -#define MMQ_X_Q4_0_RDNA1 64 -#define MMQ_Y_Q4_0_RDNA1 64 -#define NWARPS_Q4_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_0_AMPERE 4 -#define MMQ_Y_Q4_0_AMPERE 32 -#define NWARPS_Q4_0_AMPERE 4 -#else -#define MMQ_X_Q4_0_AMPERE 64 -#define MMQ_Y_Q4_0_AMPERE 128 -#define NWARPS_Q4_0_AMPERE 4 -#endif -#define MMQ_X_Q4_0_PASCAL 64 -#define MMQ_Y_Q4_0_PASCAL 64 -#define NWARPS_Q4_0_PASCAL 8 - template static __device__ __forceinline__ void mul_mat_q( @@ -1072,1107 +1182,265 @@ static __device__ __forceinline__ void mul_mat_q( } } -template static __global__ void -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_0_RDNA2, 2) -#endif // defined(RDNA3) || defined(RDNA2) -#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) - mul_mat_q4_0( - const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, - const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { +static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + #if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_0_RDNA2; - const int mmq_y = MMQ_Y_Q4_0_RDNA2; - const int nwarps = NWARPS_Q4_0_RDNA2; + return mmq_config.rdna2; #else - const int mmq_x = MMQ_X_Q4_0_RDNA1; - const int mmq_y = MMQ_Y_Q4_0_RDNA1; - const int nwarps = NWARPS_Q4_0_RDNA1; + return mmq_config.rdna1; #endif // defined(RDNA3) || defined(RDNA2) - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +#else -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_0_AMPERE; - const int mmq_y = MMQ_Y_Q4_0_AMPERE; - const int nwarps = NWARPS_Q4_0_AMPERE; +#if __CUDA_ARCH__ >= CC_VOLTA + return mmq_config.ampere; +#else + return mmq_config.pascal; +#endif // __CUDA_ARCH__ >= CC_VOLTA - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +} -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_0_PASCAL; - const int mmq_y = MMQ_Y_Q4_0_PASCAL; - const int nwarps = NWARPS_Q4_0_PASCAL; +template static __global__ void +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +#if defined(RDNA3) || defined(RDNA2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2) +#endif // defined(RDNA3) || defined(RDNA2) +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + mul_mat_q4_0( + const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, + const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0); - mul_mat_q, - load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_0, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q4_1_RDNA2 64 -#define MMQ_Y_Q4_1_RDNA2 128 -#define NWARPS_Q4_1_RDNA2 8 -#define MMQ_X_Q4_1_RDNA1 64 -#define MMQ_Y_Q4_1_RDNA1 64 -#define NWARPS_Q4_1_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_1_AMPERE 4 -#define MMQ_Y_Q4_1_AMPERE 32 -#define NWARPS_Q4_1_AMPERE 4 -#else -#define MMQ_X_Q4_1_AMPERE 64 -#define MMQ_Y_Q4_1_AMPERE 128 -#define NWARPS_Q4_1_AMPERE 4 -#endif -#define MMQ_X_Q4_1_PASCAL 64 -#define MMQ_Y_Q4_1_PASCAL 64 -#define NWARPS_Q4_1_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_1_RDNA2; - const int mmq_y = MMQ_Y_Q4_1_RDNA2; - const int nwarps = NWARPS_Q4_1_RDNA2; -#else - const int mmq_x = MMQ_X_Q4_1_RDNA1; - const int mmq_y = MMQ_Y_Q4_1_RDNA1; - const int nwarps = NWARPS_Q4_1_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_1_AMPERE; - const int mmq_y = MMQ_Y_Q4_1_AMPERE; - const int nwarps = NWARPS_Q4_1_AMPERE; - - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_1_PASCAL; - const int mmq_y = MMQ_Y_Q4_1_PASCAL; - const int nwarps = NWARPS_Q4_1_PASCAL; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1); - mul_mat_q, - load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_1, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_0_RDNA2 64 -#define MMQ_Y_Q5_0_RDNA2 128 -#define NWARPS_Q5_0_RDNA2 8 -#define MMQ_X_Q5_0_RDNA1 64 -#define MMQ_Y_Q5_0_RDNA1 64 -#define NWARPS_Q5_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_0_AMPERE 4 -#define MMQ_Y_Q5_0_AMPERE 32 -#define NWARPS_Q5_0_AMPERE 4 -#else -#define MMQ_X_Q5_0_AMPERE 128 -#define MMQ_Y_Q5_0_AMPERE 64 -#define NWARPS_Q5_0_AMPERE 4 -#endif -#define MMQ_X_Q5_0_PASCAL 64 -#define MMQ_Y_Q5_0_PASCAL 64 -#define NWARPS_Q5_0_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_0_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_0_RDNA2; - const int mmq_y = MMQ_Y_Q5_0_RDNA2; - const int nwarps = NWARPS_Q5_0_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_0_RDNA1; - const int mmq_y = MMQ_Y_Q5_0_RDNA1; - const int nwarps = NWARPS_Q5_0_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0); - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_0_AMPERE; - const int mmq_y = MMQ_Y_Q5_0_AMPERE; - const int nwarps = NWARPS_Q5_0_AMPERE; - - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_0_PASCAL; - const int mmq_y = MMQ_Y_Q5_0_PASCAL; - const int nwarps = NWARPS_Q5_0_PASCAL; - - mul_mat_q, - load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_0, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_1_RDNA2 64 -#define MMQ_Y_Q5_1_RDNA2 128 -#define NWARPS_Q5_1_RDNA2 8 -#define MMQ_X_Q5_1_RDNA1 64 -#define MMQ_Y_Q5_1_RDNA1 64 -#define NWARPS_Q5_1_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_1_AMPERE 4 -#define MMQ_Y_Q5_1_AMPERE 32 -#define NWARPS_Q5_1_AMPERE 4 -#else -#define MMQ_X_Q5_1_AMPERE 128 -#define MMQ_Y_Q5_1_AMPERE 64 -#define NWARPS_Q5_1_AMPERE 4 -#endif -#define MMQ_X_Q5_1_PASCAL 64 -#define MMQ_Y_Q5_1_PASCAL 64 -#define NWARPS_Q5_1_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_1_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_1( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_1_RDNA2; - const int mmq_y = MMQ_Y_Q5_1_RDNA2; - const int nwarps = NWARPS_Q5_1_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_1_RDNA1; - const int mmq_y = MMQ_Y_Q5_1_RDNA1; - const int nwarps = NWARPS_Q5_1_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_1_AMPERE; - const int mmq_y = MMQ_Y_Q5_1_AMPERE; - const int nwarps = NWARPS_Q5_1_AMPERE; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1); - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_1_PASCAL; - const int mmq_y = MMQ_Y_Q5_1_PASCAL; - const int nwarps = NWARPS_Q5_1_PASCAL; - - mul_mat_q, - load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_1, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q8_0_RDNA2 64 -#define MMQ_Y_Q8_0_RDNA2 128 -#define NWARPS_Q8_0_RDNA2 8 -#define MMQ_X_Q8_0_RDNA1 64 -#define MMQ_Y_Q8_0_RDNA1 64 -#define NWARPS_Q8_0_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q8_0_AMPERE 4 -#define MMQ_Y_Q8_0_AMPERE 32 -#define NWARPS_Q8_0_AMPERE 4 -#else -#define MMQ_X_Q8_0_AMPERE 128 -#define MMQ_Y_Q8_0_AMPERE 64 -#define NWARPS_Q8_0_AMPERE 4 -#endif -#define MMQ_X_Q8_0_PASCAL 64 -#define MMQ_Y_Q8_0_PASCAL 64 -#define NWARPS_Q8_0_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q8_0_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q8_0( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q8_0_RDNA2; - const int mmq_y = MMQ_Y_Q8_0_RDNA2; - const int nwarps = NWARPS_Q8_0_RDNA2; -#else - const int mmq_x = MMQ_X_Q8_0_RDNA1; - const int mmq_y = MMQ_Y_Q8_0_RDNA1; - const int nwarps = NWARPS_Q8_0_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q8_0_AMPERE; - const int mmq_y = MMQ_Y_Q8_0_AMPERE; - const int nwarps = NWARPS_Q8_0_AMPERE; - - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q8_0_PASCAL; - const int mmq_y = MMQ_Y_Q8_0_PASCAL; - const int nwarps = NWARPS_Q8_0_PASCAL; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0); - mul_mat_q, - load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> + mul_mat_q, + load_tiles_q8_0, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q2_K_RDNA2 64 -#define MMQ_Y_Q2_K_RDNA2 128 -#define NWARPS_Q2_K_RDNA2 8 -#define MMQ_X_Q2_K_RDNA1 128 -#define MMQ_Y_Q2_K_RDNA1 32 -#define NWARPS_Q2_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q2_K_AMPERE 4 -#define MMQ_Y_Q2_K_AMPERE 32 -#define NWARPS_Q2_K_AMPERE 4 -#else -#define MMQ_X_Q2_K_AMPERE 64 -#define MMQ_Y_Q2_K_AMPERE 128 -#define NWARPS_Q2_K_AMPERE 4 -#endif -#define MMQ_X_Q2_K_PASCAL 64 -#define MMQ_Y_Q2_K_PASCAL 64 -#define NWARPS_Q2_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q2_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q2_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q2_K_RDNA2; - const int mmq_y = MMQ_Y_Q2_K_RDNA2; - const int nwarps = NWARPS_Q2_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q2_K_RDNA1; - const int mmq_y = MMQ_Y_Q2_K_RDNA1; - const int nwarps = NWARPS_Q2_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K); - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q2_K_AMPERE; - const int mmq_y = MMQ_Y_Q2_K_AMPERE; - const int nwarps = NWARPS_Q2_K_AMPERE; - - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q2_K_PASCAL; - const int mmq_y = MMQ_Y_Q2_K_PASCAL; - const int nwarps = NWARPS_Q2_K_PASCAL; - - mul_mat_q, - load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q2_K, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q3_K_RDNA2 128 -#define MMQ_Y_Q3_K_RDNA2 64 -#define NWARPS_Q3_K_RDNA2 8 -#define MMQ_X_Q3_K_RDNA1 32 -#define MMQ_Y_Q3_K_RDNA1 128 -#define NWARPS_Q3_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q3_K_AMPERE 4 -#define MMQ_Y_Q3_K_AMPERE 32 -#define NWARPS_Q3_K_AMPERE 4 -#else -#define MMQ_X_Q3_K_AMPERE 128 -#define MMQ_Y_Q3_K_AMPERE 128 -#define NWARPS_Q3_K_AMPERE 4 -#endif -#define MMQ_X_Q3_K_PASCAL 64 -#define MMQ_Y_Q3_K_PASCAL 64 -#define NWARPS_Q3_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q3_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q3_K_RDNA2; - const int mmq_y = MMQ_Y_Q3_K_RDNA2; - const int nwarps = NWARPS_Q3_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q3_K_RDNA1; - const int mmq_y = MMQ_Y_Q3_K_RDNA1; - const int nwarps = NWARPS_Q3_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q3_K_AMPERE; - const int mmq_y = MMQ_Y_Q3_K_AMPERE; - const int nwarps = NWARPS_Q3_K_AMPERE; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K); - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q3_K_PASCAL; - const int mmq_y = MMQ_Y_Q3_K_PASCAL; - const int nwarps = NWARPS_Q3_K_PASCAL; - - mul_mat_q, - load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q3_K, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q4_K_RDNA2 64 -#define MMQ_Y_Q4_K_RDNA2 128 -#define NWARPS_Q4_K_RDNA2 8 -#define MMQ_X_Q4_K_RDNA1 32 -#define MMQ_Y_Q4_K_RDNA1 64 -#define NWARPS_Q4_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q4_K_AMPERE 4 -#define MMQ_Y_Q4_K_AMPERE 32 -#define NWARPS_Q4_K_AMPERE 4 -#else -#define MMQ_X_Q4_K_AMPERE 64 -#define MMQ_Y_Q4_K_AMPERE 128 -#define NWARPS_Q4_K_AMPERE 4 -#endif -#define MMQ_X_Q4_K_PASCAL 64 -#define MMQ_Y_Q4_K_PASCAL 64 -#define NWARPS_Q4_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q4_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q4_K_RDNA2; - const int mmq_y = MMQ_Y_Q4_K_RDNA2; - const int nwarps = NWARPS_Q4_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q4_K_RDNA1; - const int mmq_y = MMQ_Y_Q4_K_RDNA1; - const int nwarps = NWARPS_Q4_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q4_K_AMPERE; - const int mmq_y = MMQ_Y_Q4_K_AMPERE; - const int nwarps = NWARPS_Q4_K_AMPERE; - - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q4_K_PASCAL; - const int mmq_y = MMQ_Y_Q4_K_PASCAL; - const int nwarps = NWARPS_Q4_K_PASCAL; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K); - mul_mat_q, - load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q4_K, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q5_K_RDNA2 64 -#define MMQ_Y_Q5_K_RDNA2 128 -#define NWARPS_Q5_K_RDNA2 8 -#define MMQ_X_Q5_K_RDNA1 32 -#define MMQ_Y_Q5_K_RDNA1 64 -#define NWARPS_Q5_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q5_K_AMPERE 4 -#define MMQ_Y_Q5_K_AMPERE 32 -#define NWARPS_Q5_K_AMPERE 4 -#else -#define MMQ_X_Q5_K_AMPERE 64 -#define MMQ_Y_Q5_K_AMPERE 128 -#define NWARPS_Q5_K_AMPERE 4 -#endif -#define MMQ_X_Q5_K_PASCAL 64 -#define MMQ_Y_Q5_K_PASCAL 64 -#define NWARPS_Q5_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q5_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) mul_mat_q5_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q5_K_RDNA2; - const int mmq_y = MMQ_Y_Q5_K_RDNA2; - const int nwarps = NWARPS_Q5_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q5_K_RDNA1; - const int mmq_y = MMQ_Y_Q5_K_RDNA1; - const int nwarps = NWARPS_Q5_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q5_K_AMPERE; - const int mmq_y = MMQ_Y_Q5_K_AMPERE; - const int nwarps = NWARPS_Q5_K_AMPERE; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K); - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q5_K_PASCAL; - const int mmq_y = MMQ_Y_Q5_K_PASCAL; - const int nwarps = NWARPS_Q5_K_PASCAL; - - mul_mat_q, - load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q5_K, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -#define MMQ_X_Q6_K_RDNA2 64 -#define MMQ_Y_Q6_K_RDNA2 128 -#define NWARPS_Q6_K_RDNA2 8 -#define MMQ_X_Q6_K_RDNA1 32 -#define MMQ_Y_Q6_K_RDNA1 64 -#define NWARPS_Q6_K_RDNA1 8 -#if defined(CUDA_USE_TENSOR_CORES) -#define MMQ_X_Q6_K_AMPERE 4 -#define MMQ_Y_Q6_K_AMPERE 32 -#define NWARPS_Q6_K_AMPERE 4 -#else -#define MMQ_X_Q6_K_AMPERE 64 -#define MMQ_Y_Q6_K_AMPERE 64 -#define NWARPS_Q6_K_AMPERE 4 -#endif -#define MMQ_X_Q6_K_PASCAL 64 -#define MMQ_Y_Q6_K_PASCAL 64 -#define NWARPS_Q6_K_PASCAL 8 - template static __global__ void #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) - __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_RDNA2, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #elif __CUDA_ARCH__ < CC_VOLTA - __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2) + __launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2) #endif // __CUDA_ARCH__ < CC_VOLTA mul_mat_q6_K( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) { -#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) -#if defined(RDNA3) || defined(RDNA2) - const int mmq_x = MMQ_X_Q6_K_RDNA2; - const int mmq_y = MMQ_Y_Q6_K_RDNA2; - const int nwarps = NWARPS_Q6_K_RDNA2; -#else - const int mmq_x = MMQ_X_Q6_K_RDNA1; - const int mmq_y = MMQ_Y_Q6_K_RDNA1; - const int nwarps = NWARPS_Q6_K_RDNA1; -#endif // defined(RDNA3) || defined(RDNA2) - - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= CC_VOLTA - const int mmq_x = MMQ_X_Q6_K_AMPERE; - const int mmq_y = MMQ_Y_Q6_K_AMPERE; - const int nwarps = NWARPS_Q6_K_AMPERE; - - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - -#elif __CUDA_ARCH__ >= MIN_CC_DP4A - const int mmq_x = MMQ_X_Q6_K_PASCAL; - const int mmq_y = MMQ_Y_Q6_K_PASCAL; - const int nwarps = NWARPS_Q6_K_PASCAL; +#if __CUDA_ARCH__ >= MIN_CC_DP4A + constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K); - mul_mat_q, - load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> + mul_mat_q, + load_tiles_q6_K, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat> (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); #else GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat); NO_DEVICE_CODE; -#endif // __CUDA_ARCH__ >= CC_VOLTA +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A } -static void ggml_mul_mat_q4_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_0_RDNA2; - mmq_y = MMQ_Y_Q4_0_RDNA2; - nwarps = NWARPS_Q4_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_0_RDNA1; - mmq_y = MMQ_Y_Q4_0_RDNA1; - nwarps = NWARPS_Q4_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_0_AMPERE; - mmq_y = MMQ_Y_Q4_0_AMPERE; - nwarps = NWARPS_Q4_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_0_PASCAL; - mmq_y = MMQ_Y_Q4_0_PASCAL; - nwarps = NWARPS_Q4_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q4_1_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_1_RDNA2; - mmq_y = MMQ_Y_Q4_1_RDNA2; - nwarps = NWARPS_Q4_1_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_1_RDNA1; - mmq_y = MMQ_Y_Q4_1_RDNA1; - nwarps = NWARPS_Q4_1_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_1_AMPERE; - mmq_y = MMQ_Y_Q4_1_AMPERE; - nwarps = NWARPS_Q4_1_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_1_PASCAL; - mmq_y = MMQ_Y_Q4_1_PASCAL; - nwarps = NWARPS_Q4_1_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_0_RDNA2; - mmq_y = MMQ_Y_Q5_0_RDNA2; - nwarps = NWARPS_Q5_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_0_RDNA1; - mmq_y = MMQ_Y_Q5_0_RDNA1; - nwarps = NWARPS_Q5_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_0_AMPERE; - mmq_y = MMQ_Y_Q5_0_AMPERE; - nwarps = NWARPS_Q5_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_0_PASCAL; - mmq_y = MMQ_Y_Q5_0_PASCAL; - nwarps = NWARPS_Q5_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_1_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_1_RDNA2; - mmq_y = MMQ_Y_Q5_1_RDNA2; - nwarps = NWARPS_Q5_1_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_1_RDNA1; - mmq_y = MMQ_Y_Q5_1_RDNA1; - nwarps = NWARPS_Q5_1_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_1_AMPERE; - mmq_y = MMQ_Y_Q5_1_AMPERE; - nwarps = NWARPS_Q5_1_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_1_PASCAL; - mmq_y = MMQ_Y_Q5_1_PASCAL; - nwarps = NWARPS_Q5_1_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_1<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q8_0_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q8_0_RDNA2; - mmq_y = MMQ_Y_Q8_0_RDNA2; - nwarps = NWARPS_Q8_0_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q8_0_RDNA1; - mmq_y = MMQ_Y_Q8_0_RDNA1; - nwarps = NWARPS_Q8_0_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q8_0_AMPERE; - mmq_y = MMQ_Y_Q8_0_AMPERE; - nwarps = NWARPS_Q8_0_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q8_0_PASCAL; - mmq_y = MMQ_Y_Q8_0_PASCAL; - nwarps = NWARPS_Q8_0_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q8_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q8_0<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q2_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q2_K_RDNA2; - mmq_y = MMQ_Y_Q2_K_RDNA2; - nwarps = NWARPS_Q2_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q2_K_RDNA1; - mmq_y = MMQ_Y_Q2_K_RDNA1; - nwarps = NWARPS_Q2_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q2_K_AMPERE; - mmq_y = MMQ_Y_Q2_K_AMPERE; - nwarps = NWARPS_Q2_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q2_K_PASCAL; - mmq_y = MMQ_Y_Q2_K_PASCAL; - nwarps = NWARPS_Q2_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q2_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q2_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q3_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - -#if QK_K == 256 - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q3_K_RDNA2; - mmq_y = MMQ_Y_Q3_K_RDNA2; - nwarps = NWARPS_Q3_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q3_K_RDNA1; - mmq_y = MMQ_Y_Q3_K_RDNA1; - nwarps = NWARPS_Q3_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q3_K_AMPERE; - mmq_y = MMQ_Y_Q3_K_AMPERE; - nwarps = NWARPS_Q3_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q3_K_PASCAL; - mmq_y = MMQ_Y_Q3_K_PASCAL; - nwarps = NWARPS_Q3_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q3_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q3_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -#endif -} - -static void ggml_mul_mat_q4_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q4_K_RDNA2; - mmq_y = MMQ_Y_Q4_K_RDNA2; - nwarps = NWARPS_Q4_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q4_K_RDNA1; - mmq_y = MMQ_Y_Q4_K_RDNA1; - nwarps = NWARPS_Q4_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q4_K_AMPERE; - mmq_y = MMQ_Y_Q4_K_AMPERE; - nwarps = NWARPS_Q4_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q4_K_PASCAL; - mmq_y = MMQ_Y_Q4_K_PASCAL; - nwarps = NWARPS_Q4_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q4_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q4_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q5_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q5_K_RDNA2; - mmq_y = MMQ_Y_Q5_K_RDNA2; - nwarps = NWARPS_Q5_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q5_K_RDNA1; - mmq_y = MMQ_Y_Q5_K_RDNA1; - nwarps = NWARPS_Q5_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q5_K_AMPERE; - mmq_y = MMQ_Y_Q5_K_AMPERE; - nwarps = NWARPS_Q5_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q5_K_PASCAL; - mmq_y = MMQ_Y_Q5_K_PASCAL; - nwarps = NWARPS_Q5_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q5_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q5_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} - -static void ggml_mul_mat_q6_K_q8_1_cuda( - const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, - const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) { - - int id = ggml_cuda_get_device(); - const int compute_capability = ggml_cuda_info().devices[id].cc; - - int mmq_x, mmq_y, nwarps; - if (compute_capability >= CC_RDNA2) { - mmq_x = MMQ_X_Q6_K_RDNA2; - mmq_y = MMQ_Y_Q6_K_RDNA2; - nwarps = NWARPS_Q6_K_RDNA2; - } else if (compute_capability >= CC_OFFSET_AMD) { - mmq_x = MMQ_X_Q6_K_RDNA1; - mmq_y = MMQ_Y_Q6_K_RDNA1; - nwarps = NWARPS_Q6_K_RDNA1; - } else if (compute_capability >= CC_VOLTA) { - mmq_x = MMQ_X_Q6_K_AMPERE; - mmq_y = MMQ_Y_Q6_K_AMPERE; - nwarps = NWARPS_Q6_K_AMPERE; - } else if (compute_capability >= MIN_CC_DP4A) { - mmq_x = MMQ_X_Q6_K_PASCAL; - mmq_y = MMQ_Y_Q6_K_PASCAL; - nwarps = NWARPS_Q6_K_PASCAL; - } else { - GGML_ASSERT(false); - } - - const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y; - const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x; - const dim3 block_nums(block_num_x, block_num_y, 1); - const dim3 block_dims(WARP_SIZE, nwarps, 1); - - if (nrows_x % mmq_y == 0) { - const bool need_check = false; - mul_mat_q6_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } else { - const bool need_check = true; - mul_mat_q6_K<<>> - (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); - } -} +#define MMQ_SWITCH_CASE(type_suffix) \ + case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \ + const bool need_check = false; \ + mul_mat_q##type_suffix<<>> \ + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ + } else { \ + const bool need_check = true; \ + mul_mat_q##type_suffix<<>> \ + (src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \ + } break; \ void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, @@ -2190,47 +1458,84 @@ void ggml_cuda_op_mul_mat_q( const int64_t row_diff = row_high - row_low; int id = ggml_cuda_get_device(); + const int compute_capability = ggml_cuda_info().devices[id].cc; // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; + mmq_config_t mmq_config; + switch (src0->type) { case GGML_TYPE_Q4_0: - ggml_mul_mat_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_0; break; case GGML_TYPE_Q4_1: - ggml_mul_mat_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_1; break; case GGML_TYPE_Q5_0: - ggml_mul_mat_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_0; break; case GGML_TYPE_Q5_1: - ggml_mul_mat_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_1; break; case GGML_TYPE_Q8_0: - ggml_mul_mat_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q8_0; break; case GGML_TYPE_Q2_K: - ggml_mul_mat_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q2_K; break; case GGML_TYPE_Q3_K: - ggml_mul_mat_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q3_K; break; case GGML_TYPE_Q4_K: - ggml_mul_mat_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q4_K; break; case GGML_TYPE_Q5_K: - ggml_mul_mat_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q5_K; break; case GGML_TYPE_Q6_K: - ggml_mul_mat_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream); + mmq_config = MMQ_CONFIG_Q6_K; break; default: GGML_ASSERT(false); break; } + mmq_arch_config_t arch_config; + if (compute_capability >= CC_RDNA2) { + arch_config = mmq_config.rdna2; + } else if (compute_capability >= CC_OFFSET_AMD) { + arch_config = mmq_config.rdna1; + } else if (compute_capability >= CC_VOLTA) { + arch_config = mmq_config.ampere; + } else if (compute_capability >= MIN_CC_DP4A) { + arch_config = mmq_config.pascal; + } else { + GGML_ASSERT(false); + } + + const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y; + const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x; + const dim3 block_nums(block_num_x, block_num_y, 1); + const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1); + + switch (src0->type) { + MMQ_SWITCH_CASE(4_0) + MMQ_SWITCH_CASE(4_1) + MMQ_SWITCH_CASE(5_0) + MMQ_SWITCH_CASE(5_1) + MMQ_SWITCH_CASE(8_0) + MMQ_SWITCH_CASE(2_K) + MMQ_SWITCH_CASE(3_K) + MMQ_SWITCH_CASE(4_K) + MMQ_SWITCH_CASE(5_K) + MMQ_SWITCH_CASE(6_K) + default: + GGML_ASSERT(false); + break; + } + GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); From 11474e756de3f56b760986e73086d40e787e52f8 Mon Sep 17 00:00:00 2001 From: Amir Date: Tue, 21 May 2024 17:13:12 +0300 Subject: [PATCH 17/18] examples: cache hf model when --model not provided (#7353) * examples: cache hf model when --model not provided * examples: cache hf model when --model not provided * examples: cache hf model when --model not provided * examples: cache hf model when --model not provided * examples: cache hf model when --model not provided --- common/common.cpp | 32 +++++++++++++++++++++++++++++++- common/common.h | 1 + examples/main/README.md | 2 ++ 3 files changed, 34 insertions(+), 1 deletion(-) diff --git a/common/common.cpp b/common/common.cpp index e624fc7f35352..ae11650b446a4 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -1354,7 +1354,12 @@ void gpt_params_handle_model_default(gpt_params & params) { } params.hf_file = params.model; } else if (params.model.empty()) { - params.model = "models/" + string_split(params.hf_file, '/').back(); + std::string cache_directory = get_cache_directory(); + const bool success = create_directory_with_parents(cache_directory); + if (!success) { + throw std::runtime_error("failed to create cache directory: " + cache_directory); + } + params.model = cache_directory + string_split(params.hf_file, '/').back(); } } else if (!params.model_url.empty()) { if (params.model.empty()) { @@ -2516,6 +2521,31 @@ bool create_directory_with_parents(const std::string & path) { #endif // _WIN32 } +std::string get_cache_directory() { + std::string cache_directory = ""; + if (getenv("LLAMA_CACHE")) { + cache_directory = std::getenv("LLAMA_CACHE"); + if (cache_directory.back() != DIRECTORY_SEPARATOR) { + cache_directory += DIRECTORY_SEPARATOR; + } + } else { +#ifdef __linux__ + if (std::getenv("XDG_CACHE_HOME")) { + cache_directory = std::getenv("XDG_CACHE_HOME"); + } else { + cache_directory = std::getenv("HOME") + std::string("/.cache/"); + } +#elif defined(__APPLE__) + cache_directory = std::getenv("HOME") + std::string("/Library/Caches/"); +#elif defined(_WIN32) + cache_directory = std::getenv("APPDATA"); +#endif // __linux__ + cache_directory += "llama.cpp"; + cache_directory += DIRECTORY_SEPARATOR; + } + return cache_directory; +} + void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data) { if (data.empty()) { fprintf(stream, "%s:\n", prop_name); diff --git a/common/common.h b/common/common.h index 566490e2f881a..a8e5e50e6b810 100644 --- a/common/common.h +++ b/common/common.h @@ -281,6 +281,7 @@ bool llama_should_add_bos_token(const llama_model * model); // bool create_directory_with_parents(const std::string & path); +std::string get_cache_directory(); void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector & data); void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector & data); void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data); diff --git a/examples/main/README.md b/examples/main/README.md index 97e2ae4c2dc43..ee930f4e79a0d 100644 --- a/examples/main/README.md +++ b/examples/main/README.md @@ -325,3 +325,5 @@ These options provide extra functionality and customization when running the LLa - `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. - `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains. - `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation. + +- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache. From c3f8d583560b4f261fa21c976793e538c60cd66c Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 21 May 2024 19:53:48 +0300 Subject: [PATCH 18/18] tests : test-tokenizer-0.sh print more info (#7402) --- convert-hf-to-gguf-update.py | 2 +- convert-hf-to-gguf.py | 2 +- tests/test-tokenizer-0.sh | 7 ++++++- 3 files changed, 8 insertions(+), 3 deletions(-) diff --git a/convert-hf-to-gguf-update.py b/convert-hf-to-gguf-update.py index 45404b32b75ae..1923b88ba2a80 100755 --- a/convert-hf-to-gguf-update.py +++ b/convert-hf-to-gguf-update.py @@ -72,7 +72,7 @@ class TOKENIZER_TYPE(IntEnum): {"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, {"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, {"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, - {"name": "stablelm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, + {"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", }, {"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", }, {"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", }, {"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", }, diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 1acf45bf2f48e..6357d40348b34 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -447,7 +447,7 @@ def get_vocab_base_pre(self, tokenizer) -> str: # ref: https://huggingface.co/openai-community/gpt2 res = "gpt-2" if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3": - # ref: https://huggingface.co/stabilityai/stablelm-2-1_6b + # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b res = "stablelm2" if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff": # ref: https://huggingface.co/smallcloudai/Refact-1_6-base diff --git a/tests/test-tokenizer-0.sh b/tests/test-tokenizer-0.sh index 2fb8632d810c4..1fec8bbf130db 100755 --- a/tests/test-tokenizer-0.sh +++ b/tests/test-tokenizer-0.sh @@ -17,10 +17,15 @@ make -j tests/test-tokenizer-0 printf "Testing %s on %s ...\n" $name $input +set -e + +printf "Tokenizing using (py) Python AutoTokenizer ...\n" python3 ./tests/test-tokenizer-0.py ./models/tokenizers/$name --fname-tok $input > /tmp/test-tokenizer-0-$name-py.log 2>&1 -cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" +printf "Tokenizing using (cpp) llama.cpp ...\n" ./tests/test-tokenizer-0 ./models/ggml-vocab-$name.gguf $input > /tmp/test-tokenizer-0-$name-cpp.log 2>&1 + +cat /tmp/test-tokenizer-0-$name-py.log | grep "tokenized in" cat /tmp/test-tokenizer-0-$name-cpp.log | grep "tokenized in" diff $input.tok $input.tokcpp > /dev/null 2>&1