-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaNet.py
183 lines (106 loc) · 5.25 KB
/
AdaNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
##AdaNet network specification.
from __future__ import print_function
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, BatchNormalization
from keras.optimizers import Adam,SGD
from keras.callbacks import EarlyStopping
from keras.models import load_model
import os
import h5py
#Define a few variables that will be utilised throughout the script:
input_count = 64*11
output_count = 39
class AnaNet():
'''
Network class for a DNN
'''
def __init__(self,input_count = (11,64,),batch_size = 100, hidden_count = 6):
self.input_count = input_count
self.batch_size = batch_size
self.model = self.build(hidden_count=hidden_count)
def build(self, hidden_count):
model = Sequential()
model.add(Dense(units = input_count, input_shape = [11,64,], activation = 'linear'))
model.add(Flatten())
for i in range(hidden_count-1):
model.add(Dense(1024, activation = 'sigmoid'))
model.add(BatchNormalization())
model.add(Dropout(0.1))
model.add(Dense(output_count, activation = 'sigmoid', name='preds'))
optimizer = Adam() # SGD(lr = 0.001, decay = 0, momentum = 0)#momentum = 0.9, decay=1e-6, nesterov = True)
model.compile(optimizer = optimizer, loss = 'categorical_crossentropy',metrics=['accuracy'])
return(model)
def fit(self, X,T):
self.model.fit(X,T)
def fit_generator(self, generator, val_generator, steps = [20000,1000],nb_epoch = 50 ):
early = EarlyStopping(monitor='val_loss', min_delta=0, patience=25, verbose=1, mode='auto')
self.model.fit_generator(generator.__getitem__(), steps_per_epoch=steps[0]//self.batch_size, class_weight = None, verbose = 1, use_multiprocessing = False, epochs = nb_epoch,max_queue_size=1, workers=1, callbacks=[early],validation_steps=steps[1]//self.batch_size, validation_data=val_generator.__getitem__())
def predict(self,X):
return(self.model.predict(X))
class kaldi_generator():
def __init__(self, batch_size = 100,
data_loc = '/media/sebastian/7B4861FD6D0F6AA2/finalt.h5',
feature_loc = '/media/sebastian/7B4861FD6D0F6AA2/finalx.h5',
file_keys = None, val_perc = 0, validation = False):
self.batch_size = batch_size
self.n = 0
self.X = h5py.File(feature_loc,'r')
self.T = h5py.File(data_loc,'r')
self.X_stats = {}
self.counter = 0
if file_keys:
self.X_keys = file_keys
else:
self.X_keys = [k for k in self.X.keys()]
val_count = int(len(self.X_keys)*val_perc)
if validation:
self.X_keys = self.X_keys[:val_count]
else:
self.X_keys = self.X_keys[val_count:]
for k in self.X.keys():
self.X_stats[k]=[np.random.randint(self.X[k].shape[0]-20), self.X[k].shape[0]-20,0]
def __getitem__(self):
while 1:
X = np.zeros((self.batch_size,11,64))
T = np.zeros((self.batch_size,39))
for i in range(0,self.batch_size,100):
if self.n==len(self.X_keys): self.n=0
key = self.X_keys[self.n]
if self.X_stats[key][0]+100 >= self.X_stats[key][1]:
self.X_stats[key][0] = 0
X[i:i+100,:,:] = self.X[key][self.X_stats[key][0]:self.X_stats[key][0]+100,:,:]
T[i:i+100,:] = self.T[key][self.X_stats[key][0]:self.X_stats[key][0]+100,:]
self.X_stats[key][0]+=100
self.n += 1
yield (X,T)
#gen = kaldi_generator(file_keys = train_files, val_perc = 0.1, validation = False)#train_files)
#val_gen = kaldi_generator(file_keys = val_files, val_perc = 0.1, validation = True)# test_files)
def __main__(args):
split_loc = 'resources/split.npy'
splits = np.load(split_loc,'r')
val_files = [i[0] for i in splits if i[1]=='val']
train_files = [i[0] for i in splits if i[1]=='train']
test_files = [i[0] for i in splits if i[1]=='test']
X = h5py.File(args.feature_loc,'r')
T = h5py.File(args.annot_loc,'r')
net = AnaNet(batch_size = args.batch_size)
if args.model_loc:
net.model = load_model(args.model_loc)
for i in range(args.epochs):
for tset in train_files:
print(i,tset)
net.model.fit(X[tset],T[tset],batch_size = args.batch_size, shuffle='batch')
dpoints = 0
loss = 0
print('validating...')
for vset in val_files:
length = T[vset].shape[0]
dpoints+= length
loss += net.model.evaluate(X[vset],T[vset],batch_size = args.batch_size,verbose = 0)[0]*length
print(loss/dpoints)
j = 0
while os.path.exists(args.model_target+"%s" % j):
j += 1
available_name = (args.model_target+str(j))
net.model.save(args.model_target+str(j))