-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_colab.py
74 lines (59 loc) · 2.26 KB
/
utils_colab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import nltk
import pickle
import re
import numpy as np
nltk.download('stopwords')
from nltk.corpus import stopwords
# Paths for all resources for the bot.
RESOURCE_PATH = {
'INTENT_RECOGNIZER': '/content/data/intent_recognizer.pkl',
'TAG_CLASSIFIER': '/content/data/tag_classifier.pkl',
'TFIDF_VECTORIZER': '/content/data/tfidf_vectorizer.pkl',
'THREAD_EMBEDDINGS_FOLDER': '/content/data/thread_embeddings_by_tags',
'WORD_EMBEDDINGS': '/content/data/word_embeddings.tsv',
}
def text_prepare(text):
"""Performs tokenization and simple preprocessing."""
replace_by_space_re = re.compile('[/(){}\[\]\|@,;]')
bad_symbols_re = re.compile('[^0-9a-z #+_]')
stopwords_set = set(stopwords.words('english'))
text = text.lower()
text = replace_by_space_re.sub(' ', text)
text = bad_symbols_re.sub('', text)
text = ' '.join([x for x in text.split() if x and x not in stopwords_set])
return text.strip()
def load_embeddings(embeddings_path):
"""Loads pre-trained word embeddings from tsv file.
Args:
embeddings_path - path to the embeddings file.
Returns:
embeddings - dict mapping words to vectors;
embeddings_dim - dimension of the vectors.
"""
import numpy as np
embeddings = {}
with open(embeddings_path) as f:
for line in f:
values = line.split()
word = values[0]
vec = np.asarray(values[1:], dtype='float32')
embeddings[word] = vec
embeddings_dim=len(vec)
return embeddings,embeddings_dim
def question_to_vec(question, embeddings, dim):
"""Transforms a string to an embedding by averaging word embeddings.
question: a string
embeddings: dict where the key is a word and a value is its' embedding
dim: size of the representation
result: vector representation for the question
"""
word_list=question.split()
kword_list=[wv for wv in word_list if wv in embeddings]
output_vector=np.zeros(dim)
if kword_list:
output_vector= np.mean(np.vstack([embeddings[wv] for wv in kword_list]),axis=0)
return output_vector
def unpickle_file(filename):
"""Returns the result of unpickling the file content."""
with open(filename, 'rb') as f:
return pickle.load(f)