From 63a64805db3172f4717479ae89146c1a331ab34e Mon Sep 17 00:00:00 2001 From: "Sergey E. Koposov" Date: Fri, 15 Nov 2024 23:25:15 +0000 Subject: [PATCH] make sur npix_array is returned also return covariance --- py/rvspecfit/desi/desi_fit.py | 5 +++-- py/rvspecfit/vel_fit.py | 12 ++++++++++-- 2 files changed, 13 insertions(+), 4 deletions(-) diff --git a/py/rvspecfit/desi/desi_fit.py b/py/rvspecfit/desi/desi_fit.py index ae54b56..189995f 100644 --- a/py/rvspecfit/desi/desi_fit.py +++ b/py/rvspecfit/desi/desi_fit.py @@ -41,7 +41,8 @@ def __str__(self): 'RV_WARN': 2, # rv is to close to the edge 'RVERR_WARN': 4, # RV error is too large 'PARAM_WARN': 8, # parameters are too close to the edge - 'VSINI_WARN': 16 # vsini is too large + 'VSINI_WARN': 16, # vsini is too large + 'BAD_SPECTRUM': 32 # some issue with the spectrum } @@ -774,7 +775,6 @@ def get_specdata(waves, medspec = np.nanmedian(np.abs(spec)) if not np.isfinite(medspec) or medspec == 0: # bail out the spectrum is insane - # TODO make the logic clearer continue baddat = ~np.isfinite(spec + curivars) if mask_dicroic: @@ -1042,6 +1042,7 @@ def proc_desi(fname, else: rr_z = np.zeros(len(seqid_to_fit)) + np.nan rr_spectype = np.ma.zeros(len(seqid_to_fit), dtype=str) + subset_ret = subset.copy() # returned subset to deal with the fact that # I'll skip some spectra diff --git a/py/rvspecfit/vel_fit.py b/py/rvspecfit/vel_fit.py index b0231b8..2bbe557 100644 --- a/py/rvspecfit/vel_fit.py +++ b/py/rvspecfit/vel_fit.py @@ -395,6 +395,12 @@ def _minimum_sampler(func, def _uncertainties_from_hessian(hessian): + """ + Take the hessian and return the uncertainties vector and + covariance matrix + Here I also protect all sorts of failures when encountering + bad hessian + """ diag_hessian = np.diag(hessian) inv_diag_hessian = 1. / (diag_hessian + (diag_hessian == 0)) inv_diag_hessian[diag_hessian == 0] = np.inf @@ -419,7 +425,7 @@ def _uncertainties_from_hessian(hessian): diag_err0[sub2] = 0 diag_err = np.sqrt(diag_err0) diag_err[sub2] = np.nan - return diag_err + return diag_err, hessian_inv def process(specdata, @@ -630,8 +636,9 @@ def hess_func_wrap(p): hess_step = ndf.MaxStepGenerator(base_step=hess_step) hessian = ndf.Hessian(hess_func_wrap, step=hess_step)( [ret['param'][_] for _ in specParamNames]) - diag_err = _uncertainties_from_hessian(hessian) + diag_err, covar_mat = _uncertainties_from_hessian(hessian) ret['param_err'] = dict(zip(specParamNames, diag_err)) + ret['param_covar'] = covar_mat ret['minimize_success'] = minimize_success ret['yfit'] = outp['models'] @@ -639,6 +646,7 @@ def hess_func_wrap(p): ret['chisq'] = outp['chisq'] ret['logl'] = outp['logl'] ret['chisq_array'] = outp['chisq_array'] + ret['npix_array'] = outp['npix_array'] t6 = time.time() logging.debug('Timings process: %.4f %.4f %.4f %.4f, %.4f %.4f' % (t1 - t0, t2 - t1, t3 - t2, t4 - t3, t5 - t4, t6 - t5))