-
Notifications
You must be signed in to change notification settings - Fork 37
/
utils.py
154 lines (125 loc) · 5.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import division
import torch
from torch.autograd import Variable
from torch.utils import data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models
# general libs
import cv2
# import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import tqdm
import os
import random
import argparse
import glob
#
def ToLabel(E):
fgs = np.argmax(E, axis=0).astype(np.float32)
return fgs.astype(np.uint8)
def ToCudaVariable(xs, volatile=False):
if torch.cuda.is_available():
return [Variable(x.cuda(), volatile=volatile) for x in xs]
else:
return [Variable(x, volatile=volatile) for x in xs]
def upsample(x, size):
x = x.numpy()[0]
dsize = (size[1], size[0])
x = cv2.resize(x, dsize=dsize, interpolation=cv2.INTER_LINEAR)
return torch.unsqueeze(torch.from_numpy(x), dim=0)
def downsample(xs, scale):
if scale == 1:
return xs
# find new size dividable by 32
h = xs[0].size()[2]
w = xs[0].size()[3]
new_h = int(h * scale)
new_w = int(w * scale)
new_h = new_h + 32 - new_h % 32
new_w = new_w + 32 - new_w % 32
dsize = (new_w, new_h)
ys = []
for x in xs:
x = x.numpy()[0] # c,h,w
if x.ndim == 3:
x = np.transpose(x, [1,2,0])
x = cv2.resize(x, dsize=dsize, interpolation=cv2.INTER_LINEAR)
x = np.transpose(x, [2,0,1])
else:
x = cv2.resize(x, dsize=dsize, interpolation=cv2.INTER_LINEAR)
ys.append(torch.unsqueeze(torch.from_numpy(x), dim=0))
return ys
class DAVIS(data.Dataset):
'''
Dataset for DAVIS
'''
def __init__(self, root, imset='2016/val.txt', resolution='480p', multi_object=False):
self.root = root
self.mask_dir = os.path.join(root, 'Annotations', resolution)
self.image_dir = os.path.join(root, 'JPEGImages', resolution)
_imset_dir = os.path.join(root, 'ImageSets')
_imset_f = os.path.join(_imset_dir, imset)
self.videos = []
self.num_frames = {}
self.num_objects = {}
self.shape = {}
with open(os.path.join(_imset_f), "r") as lines:
for line in lines:
_video = line.rstrip('\n')
self.videos.append(_video)
self.num_frames[_video] = len(glob.glob(os.path.join(self.image_dir, _video, '*.jpg')))
_mask = np.array(Image.open(os.path.join(self.mask_dir, _video, '00000.png')).convert("P"))
self.num_objects[_video] = np.max(_mask)
self.shape[_video] = np.shape(_mask)
self.MO = multi_object
def __len__(self):
return len(self.videos)
def __getitem__(self, index):
video = self.videos[index]
info = {}
info['name'] = video
info['num_frames'] = self.num_frames[video]
if self.MO:
num_objects = self.num_objects[video]
else:
num_objects = 1
info['num_objects'] = num_objects
raw_frames = np.empty((self.num_frames[video],)+self.shape[video]+(3,), dtype=np.float32)
raw_masks = np.empty((self.num_frames[video],)+self.shape[video], dtype=np.uint8)
for f in range(self.num_frames[video]):
img_file = os.path.join(self.image_dir, video, '{:05d}.jpg'.format(f))
raw_frames[f] = np.array(Image.open(img_file).convert('RGB'))/255.
try:
mask_file = os.path.join(self.mask_dir, video, '{:05d}.png'.format(f)) #allways return first frame mask
raw_mask = np.array(Image.open(mask_file).convert('P'), dtype=np.uint8)
except:
mask_file = os.path.join(self.mask_dir, video, '00000.png')
raw_mask = np.array(Image.open(mask_file).convert('P'), dtype=np.uint8)
if self.MO:
raw_masks[f] = raw_mask
else:
raw_masks[f] = (raw_mask != 0).astype(np.uint8)
# make One-hot channel is object index
oh_masks = np.zeros((self.num_frames[video],)+self.shape[video]+(num_objects,), dtype=np.uint8)
for o in range(num_objects):
oh_masks[:,:,:,o] = (raw_masks == (o+1)).astype(np.uint8)
# padding size to be divide by 32
nf, h, w, _ = oh_masks.shape
new_h = h + 32 - h % 32
new_w = w + 32 - w % 32
# print(new_h, new_w)
lh, uh = (new_h-h) / 2, (new_h-h) / 2 + (new_h-h) % 2
lw, uw = (new_w-w) / 2, (new_w-w) / 2 + (new_w-w) % 2
lh, uh, lw, uw = int(lh), int(uh), int(lw), int(uw)
pad_masks = np.pad(oh_masks, ((0,0),(lh,uh),(lw,uw),(0,0)), mode='constant')
pad_frames = np.pad(raw_frames, ((0,0),(lh,uh),(lw,uw),(0,0)), mode='constant')
info['pad'] = ((lh,uh),(lw,uw))
th_frames = torch.unsqueeze(torch.from_numpy(np.transpose(pad_frames, (3, 0, 1, 2)).copy()).float(), 0)
th_masks = torch.unsqueeze(torch.from_numpy(np.transpose(pad_masks, (3, 0, 1, 2)).copy()).long(), 0)
return th_frames, th_masks, info