-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
185 lines (135 loc) · 6.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import random
import time
import re
from collections import Counter
from tqdm import tqdm
import pickle
import torch
import numpy as np
import rouge
from Model import Model
import global_config
os.environ['CUDA_VISIBLE_DEVICES'] = global_config.gpu_id
running_random_number = random.randint(1000, 9999)
print("running_random_number", running_random_number, "\n")
global_rouge_scorer = rouge.Rouge(metrics=['rouge-n', 'rouge-l', 'rouge-w'],
max_n=4,
limit_length=True,
length_limit=500,
length_limit_type='words',
apply_avg=True,
apply_best=False,
alpha=0.5,
weight_factor=1.2,
stemming=True)
def prepare_results(metric, p, r, f):
return '\t{}:\t {:5.2f}\t {:5.2f}\t {:5.2f}'.format(metric, 100.0 * p, 100.0 * r, 100.0 * f)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def get_batches(data, batch_size):
batches = []
for i in range(len(data) // batch_size + bool(len(data) % batch_size)):
batches.append(data[i * batch_size:(i + 1) * batch_size])
return batches
def train_process(model, train_data, valid_data, test_data):
train_epoch = global_config.start_from_epoch
best_score = {"epoch": 0, "all_loss": 0}
running_log_name = None
while train_epoch < global_config.num_epochs:
print("\n********* Epoch {} ***********".format(train_epoch))
summary_steps = 0
random.seed(100 + train_epoch)
random.shuffle(train_data)
train_batches = get_batches(train_data, global_config.batch_size)
if global_config.scheduling_learning_rate:
if train_epoch < 1:
print("Running with warm up learning rate.")
model.adjust_learning_rate(backbone_lr=0.00001, other_lr=0.003)
else:
lr_decay = 0.98 ** (train_epoch - 1)
model.adjust_learning_rate(backbone_lr=0.00002 * lr_decay, other_lr=0.001 * lr_decay)
for batch in train_batches:
supervised_loss, transferred_sen_text = model.batch_train(batch, train_epoch)
summary_steps += 1
if summary_steps % global_config.batch_loss_print_interval == 0:
print(train_epoch, summary_steps, "supervised loss", supervised_loss)
best_score, current_eval_score = evaluate_process(model, valid_data, train_epoch, best_score)
# best_score, current_eval_score = evaluate_process(model, test_data, train_epoch, best_score)
if running_log_name is None:
running_log_name = "./running_log/" + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + "_" + str(running_random_number) + ".txt"
open(running_log_name, "w").write("Corpus mode: " + global_config.corpus_mode + "\n")
if running_log_name:
with open(running_log_name, "a") as fp:
fp.write("\nEpoch: " + str(train_epoch) + " Rouge Score: " + str(current_eval_score) + "\n")
train_epoch += 1
def evaluate_process(model, data_test_collection, train_epoch, best_score=None, preview=False, fast_infer=False):
test_batches = get_batches(data_test_collection, global_config.batch_size)
all_transferred_sentences, all_gold_sentences = [], []
all_test_loss = []
for batch in tqdm(test_batches):
if fast_infer is False:
supervised_loss, transferred_sen_text = model.batch_eval(batch)
all_test_loss.append(supervised_loss)
else:
transferred_sen_text = model.batch_infer(batch)
all_test_loss.append(-1)
all_transferred_sentences.extend(transferred_sen_text)
all_gold_sentences.extend([i[1] for i in batch])
if preview:
pass
if global_config.print_all_predictions:
with open("all_generation.txt", "w", encoding="utf-8") as fp:
for i in all_transferred_sentences:
fp.write(i.replace("\n", " ").strip() + "\n")
print("\nTest Result in epoch:", train_epoch)
all_gold_sentences = [i.lower() for i in all_gold_sentences]
all_transferred_sentences = [i.lower() for i in all_transferred_sentences]
eval_rouge_score = global_rouge_scorer.get_scores(references=all_gold_sentences, hypothesis=all_transferred_sentences)
rouge_res = ""
for metric, results in sorted(eval_rouge_score.items(), key=lambda x: x[0]):
if metric in ["rouge-1", "rouge-2", "rouge-l"]:
print(prepare_results(metric, results['p'], results['r'], results['f']))
rouge_res = rouge_res + '{:5.2f}'.format(100 * results['f']) + "-"
print("ROUGE 1-2-L F:", rouge_res, "\n")
current_eval_score = eval_rouge_score["rouge-1"]["f"]
if any(all_test_loss):
print("Test loss:", np.mean(all_test_loss))
if best_score:
if current_eval_score > best_score["all_loss"]:
best_score = {"epoch": train_epoch, "all_loss": current_eval_score}
if global_config.save_model and global_config.train and train_epoch >= 1:
model.save_model("./saved_models/best_model_" + str(running_random_number) + "_epoch" + str(train_epoch) + "_" + str(current_eval_score)[:7] + ".pth")
current_print_score_str = "ROUGE 1-2-L F:" + str(rouge_res)
return best_score, current_print_score_str
def read_data_from_file(tmp_file_prefix):
tmp_sample_list = list(zip(open(tmp_file_prefix + "source", encoding="utf-8").readlines(), open(tmp_file_prefix + "target", encoding="utf-8").readlines()))
tmp_sample_list = [[i[0].strip(), i[1].strip()] for i in tmp_sample_list]
return tmp_sample_list
if __name__ == '__main__':
setup_seed(100)
if global_config.train:
print("Reading training data...")
data_train = read_data_from_file(global_config.data_path + "train.")
print('Training Dataset size: %d' % (len(data_train)))
print("Reading validation data...")
data_valid = read_data_from_file(global_config.data_path + "val.")
print('Validation Dataset size: %d' % (len(data_valid)))
print("Reading test data...")
data_test = read_data_from_file(global_config.data_path + "test.")
print('Test Dataset size: %d' % (len(data_test)))
model = Model()
train_mode = global_config.train
if train_mode:
if global_config.start_from_epoch != 0:
load_model_path = global_config.load_model_path
model.load_model(load_model_path)
train_process(model, data_train, data_valid, data_test)
else:
load_model_path = global_config.load_model_path
model.load_model(load_model_path)
evaluate_process(model, data_test, -999, fast_infer=True)