-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembeddings_siegel.sh
executable file
·26 lines (21 loc) · 1.01 KB
/
embeddings_siegel.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#!/bin/bash
source ~/.bashrc; conda activate ntrans
export LD_LIBRARY_PATH=~/miniconda3/lib
data_dir='/lustre/groups/epigenereg01/workspace/projects/vale/mlm'
batch_size=30
for model_name in 'dnabert' 'dnabert2' 'ntrans-v2-500m' 'ntrans-v2-250m' 'dnabert-3utr' 'dnabert2-3utr' 'ntrans-v2-250m-3utr'; do
if [[ $model_name =~ "dnabert2" ]]; then
constraint="--constraint=GPU_Nvidia_Tesla_A100"
else
constraint=""
fi
if [[ $model_name =~ "-3utr" ]]; then
fasta=$data_dir'/mpra/siegel_2022/fasta/variants_rna.fa'
else
fasta=$data_dir'/mpra/siegel_2022/fasta/variants_dna_fwd.fa'
fi
output_dir="$data_dir/mpra/siegel_2022/embeddings/$model_name/"
mkdir -p $output_dir
srun -p gpu_p --qos=gpu_normal $constraint -o logs/$model_name-sieg.o -e logs/$model_name-sieg.e --nice=10000 -J $model_name-sieg -c 4 --mem=64G --gres=gpu:1 --time=2-00:00:00 \
python -u gen_embeddings.py --fasta $fasta --model $model_name --output_dir $output_dir --batch_size $batch_size &
done