diff --git a/articles/scova.html b/articles/scova.html index 1f976c3..5c8590c 100644 --- a/articles/scova.html +++ b/articles/scova.html @@ -183,45 +183,20 @@
-res <- mod$population_stationary_points()
+res <- mod$population_stationary_points(n_draws = 2000)
head(res)
-#> k p .draw t0_pop tp_pop ts_pop m1_pop m2_pop
-#> <int> <int> <int> <num> <num> <num> <num> <num>
-#> 1: 1 1 1 4.410820 8.168995 69.35724 0.447930 -0.03998171
-#> 2: 1 1 2 4.122570 8.220406 69.89225 0.463090 -0.03673517
-#> 3: 1 1 3 3.992784 8.429232 69.34377 0.469506 -0.03856111
-#> 4: 1 1 4 4.129627 8.695681 71.54112 0.440083 -0.03990376
-#> 5: 1 1 5 3.985967 8.358872 64.51578 0.488066 -0.04816820
-#> 6: 1 1 6 4.005071 8.560220 67.98897 0.504561 -0.04687770
-#> m3_pop beta_t0 beta_tp beta_ts beta_m1 beta_m2 beta_m3
-#> <num> <num> <num> <num> <num> <num> <num>
-#> 1: -0.00738625 0.0892197 -0.193925 -0.209364 0.200908 -0.0399520 -0.00468916
-#> 2: -0.00799955 -0.0617495 -0.158054 0.556248 0.217805 -0.0366927 -0.00573989
-#> 3: -0.00853792 -0.4106060 0.393672 -0.335826 0.226357 -0.0385086 -0.00599007
-#> 4: -0.00836698 -0.1504630 -0.168249 -0.374482 0.193636 -0.0392022 -0.00675386
-#> 5: -0.00784776 -0.3478230 0.104802 0.918281 0.255142 -0.0207145 -0.00605556
-#> 6: -0.00581304 -0.1382590 0.120330 -0.719028 0.267724 -0.0139650 -0.00431706
-#> mu_0 mu_p mu_s infection_history titre_type rel_drop
-#> <num> <num> <num> <char> <char> <num>
-#> 1: 106.35528 1343.598 246.5053 Infection naive Ancestral 0.1834666
-#> 2: 87.09383 1218.834 253.4858 Infection naive Ancestral 0.2079739
-#> 3: 79.60086 1236.706 242.7546 Infection naive Ancestral 0.1962912
-#> 4: 87.52087 1241.937 218.3664 Infection naive Ancestral 0.1758272
-#> 5: 79.22562 1339.590 205.4437 Infection naive Ancestral 0.1533630
-#> 6: 80.28169 1602.548 232.3682 Infection naive Ancestral 0.1449992
-#> rel_drop_me mu_p_me mu_s_me
-#> <num> <num> <num>
-#> 1: 0.1734832 1315.809 228.7876
-#> 2: 0.1734832 1315.809 228.7876
-#> 3: 0.1734832 1315.809 228.7876
-#> 4: 0.1734832 1315.809 228.7876
-#> 5: 0.1734832 1315.809 228.7876
-#> 6: 0.1734832 1315.809 228.7876
The values we’re going to plot are the mean peak titre values
-(mu_p_me
) and mean set point titre values
-(mu_s_me
), for different titre types and infection
-histories. See data for a full definition of all
-the returned columns. Using ggplot2
:
mu_p
) and mean set point titre values (mu_s
),
+for different titre types and infection histories. See data for a full definition of all the returned
+columns. Using ggplot2
:
plot_data <- res[, titre_type := forcats::fct_relevel(
titre_type,
@@ -235,7 +210,7 @@ Figure 4 group = interaction(
infection_history,
titre_type))) +
- geom_point(data = plot_data[.draw <= 2000],
+ geom_point(data = plot_data,
alpha = 0.05, size = 0.2) +
geom_point(aes(x = mu_p_me, y = mu_s_me,
shape = infection_history),
@@ -278,14 +253,14 @@ Figure 5#> method from
#> fortify.SpatialPolygonsDataFrame ggplot2
head(res)
-#> calendar_date titre_type me lo hi
-#> <IDat> <char> <num> <num> <num>
-#> 1: 2021-03-08 Ancestral 1122.561 899.7913 1474.929
-#> 2: 2021-03-09 Ancestral 1114.609 882.1468 1450.662
-#> 3: 2021-03-10 Ancestral 1150.423 911.1426 1530.973
-#> 4: 2021-03-11 Ancestral 1121.402 878.6975 1447.972
-#> 5: 2021-03-12 Ancestral 1115.039 851.9412 1443.723
-#> 6: 2021-03-13 Ancestral 1150.059 900.9269 1520.740
See data for a definition of all the returned columns. Figure 5 A plots the derived population trajectories. Here we replicate a portion of the graph from the paper, from the minimum date @@ -353,9 +328,7 @@
simulate_individu
computationally expensive and may take a while to run if n_draws is large.
Usage
scova$simulate_individual_trajectories(
- t_max = 150,
summarise = TRUE,
n_draws = 2500,
time_shift = 0,
@@ -219,13 +218,9 @@ Usage
Arguments
-t_max
-Integer. Maximum number of time points to include. Default 150.
-
-
-summarise
+summarise
Boolean. If TRUE, average the individual trajectories to get lo, me and
-hi values for the population. If FALSE return the simulated indidivudal trajectories.
+hi values for the population, disaggregated by titre type. If FALSE return the indidivudal trajectories.
Default TRUE.
@@ -245,7 +240,9 @@ Arguments
Returns
-A data.table.
+A data.table. If summarise = TRUE columns are calendar_date, titre_type, me, lo, hi.
+If summarise = FALSE, columns are stan_id, draw, t, mu, titre_type, exposure_date, calendar_date, time_shift
+and a column for each covariate in the hierarchical model.