From 49051c7523bb1b7441b8f691666f6d3c623680d5 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:06:16 +0100 Subject: [PATCH 01/11] wi[ --- R/biokinetics.R | 57 +- R/datetime-utils.R | 3 + R/validation.R | 2 +- README.md | 2 +- inst/delta_full.rds | 2 +- snapshot-tests.Dockerfile | 4 +- tests/snapshots/_snaps/snapshots.md | 81 - tests/testthat/_snaps/snapshots.md | 81 + tests/testthat/_snaps/snapshots.new.md | 81 + tests/testthat/test-data.R | 3 +- tests/testthat/test-input-validation.R | 7 +- tests/testthat/test-relative-dates.R | 28 + tests/testthat/test-run-model.R | 12 +- .../test-simulate-individual-trajectories.R | 6 +- .../test-simulate-population-trajectories.R | 14 +- .../{snapshots => testthat}/test-snapshots.R | 18 +- .../testthat/testdata/delta_full_relative.rds | 2256 +++++++++++++++++ vignettes/data.Rmd | 81 +- 18 files changed, 2548 insertions(+), 190 deletions(-) create mode 100644 R/datetime-utils.R delete mode 100644 tests/snapshots/_snaps/snapshots.md create mode 100644 tests/testthat/_snaps/snapshots.md create mode 100644 tests/testthat/_snaps/snapshots.new.md create mode 100644 tests/testthat/test-relative-dates.R rename tests/{snapshots => testthat}/test-snapshots.R (65%) create mode 100644 tests/testthat/testdata/delta_full_relative.rds diff --git a/R/biokinetics.R b/R/biokinetics.R index 96f85bf..08afb64 100644 --- a/R/biokinetics.R +++ b/R/biokinetics.R @@ -12,7 +12,6 @@ biokinetics <- R6::R6Class( preds_sd = NULL, data = NULL, covariate_formula = NULL, - time_type = NULL, fitted = NULL, stan_input_data = NULL, model = NULL, @@ -76,14 +75,18 @@ biokinetics <- R6::R6Class( # https://github.com/Rdatatable/data.table/issues/850#issuecomment-259466153 titre_type <- NULL + titre_types <- as.factor(unique(private$data$titre_type)) + dt_titre_lookup <- data.table( - k = 1:private$data[, length(unique(titre_type))], - titre_type = private$data[, unique(titre_type)]) + k = as.numeric(titre_types), + titre_type = levels(titre_types) + ) dt_out <- dt[dt_titre_lookup, on = "k"][, `:=`(k = NULL)] if ("p" %in% colnames(dt)) { dt_out <- dt_out[private$covariate_lookup_table, on = "p", nomatch = NULL][, `:=`(p = NULL)] } + data.table::setnames(dt_out, "t", "time_since_last_exp", skip_absent=TRUE) dt_out }, summarise_pop_fit = function(time_range, @@ -155,7 +158,7 @@ biokinetics <- R6::R6Class( dt_out }, prepare_stan_data = function() { - pid <- value <- censored <- titre_type_num <- titre_type <- obs_id <- t_since_last_exp <- t_since_min_date <- NULL + pid <- value <- censored <- titre_type_num <- titre_type <- obs_id <- t_since_last_exp <- NULL stan_data <- list( N = private$data[, .N], N_events = private$data[, data.table::uniqueN(pid)], @@ -172,12 +175,7 @@ biokinetics <- R6::R6Class( cens_lo_idx = private$data[censored == -2, obs_id], cens_hi_idx = private$data[censored == 1, obs_id]) - if (private$time_type == "relative") { - stan_data$t <- private$data[, t_since_last_exp] - } else { - stan_data$t <- private$data[, t_since_min_date] - } - + stan_data$t <- private$data[, t_since_last_exp] stan_data$X <- private$design_matrix stan_data$P <- ncol(private$design_matrix) @@ -217,19 +215,15 @@ biokinetics <- R6::R6Class( #' @param covariate_formula Formula specifying linear regression model. Note all variables in the formula #' will be treated as categorical variables. Default ~0. #' @param preds_sd Standard deviation of predictor coefficients. Default 0.25. - #' @param time_type One of 'relative' or 'absolute'. Default 'relative'. initialize = function(priors = biokinetics_priors(), data = NULL, file_path = NULL, covariate_formula = ~0, - preds_sd = 0.25, - time_type = "relative") { + preds_sd = 0.25) { validate_priors(priors) private$priors <- priors validate_numeric(preds_sd) private$preds_sd <- preds_sd - validate_time_type(time_type) - private$time_type <- time_type validate_formula(covariate_formula) private$covariate_formula <- covariate_formula private$all_formula_vars <- all.vars(covariate_formula) @@ -252,12 +246,8 @@ biokinetics <- R6::R6Class( logger::log_info("Preparing data for stan") private$data <- convert_log_scale(private$data, "value") private$data[, `:=`(titre_type_num = as.numeric(as.factor(titre_type)), - obs_id = seq_len(.N))] - if (time_type == "relative") { - private$data[, t_since_last_exp := as.integer(date - last_exp_date, units = "days")] - } else { - private$data[, t_since_min_date := as.integer(date - min(date), units = "days")] - } + obs_id = seq_len(.N), + t_since_last_exp = as.integer(day - last_exp_day, units = "days"))] private$construct_design_matrix() private$build_covariate_lookup_table() private$prepare_stan_data() @@ -348,24 +338,21 @@ biokinetics <- R6::R6Class( dt_out }, #' @description Process the model results into a data table of titre values over time. - #' @return A data.table containing titre values at time points. If summarise = TRUE, columns are t, me, lo, hi, - #' titre_type, and a column for each covariate in the hierarchical model. If summarise = FALSE, columns are t, .draw - #' t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop, beta_t0, beta_tp, beta_ts, beta_m1, beta_m2, beta_m3, mu + #' @return A data.table containing titre values at time points. If summarise = TRUE, columns are time_since_last_exp, + #' me, lo, hi, titre_type, and a column for each covariate in the hierarchical model. If summarise = FALSE, columns are + #' time_since_last_exp, .draw, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop, beta_t0, beta_tp, beta_ts, beta_m1, beta_m2, beta_m3, mu #' titre_type and a column for each covariate in the hierarchical model. See the data vignette for details: #' \code{vignette("data", package = "epikinetics")} - #' @param time_type One of 'relative' or 'absolute'. Default 'relative'. #' @param t_max Integer. Maximum number of time points to include. #' @param summarise Boolean. Default TRUE. If TRUE, summarises over draws from posterior parameter distributions to #' return 0.025, 0.5 and 0.975 quantiles, labelled lo, me and hi, respectively. If FALSE returns values for individual #' draws from posterior parameter distributions. #' @param n_draws Integer. Maximum number of samples to include. Default 2500. simulate_population_trajectories = function( - time_type = "relative", t_max = 150, summarise = TRUE, n_draws = 2500) { private$check_fitted() - validate_time_type(time_type) validate_numeric(t_max) validate_logical(summarise) validate_numeric(n_draws) @@ -378,12 +365,6 @@ biokinetics <- R6::R6Class( dt_out <- private$recover_covariate_names(dt_sum) - if (time_type == "absolute") { - logger::log_info("Converting to absolute time") - dt_out[, date := private$data[, unique(min(date))] + t, - by = c(private$all_formula_vars, "titre_type")] - } - dt_out <- dt_out[ , lapply(.SD, function(x) if (is.factor(x)) forcats::fct_drop(x) else x)] @@ -494,28 +475,28 @@ biokinetics <- R6::R6Class( logger::log_info("Recovering covariate names") dt_params_ind_traj <- private$recover_covariate_names(dt_params_ind_traj) - logger::log_info(paste("Calculating exposure dates. Adjusting exposures by", time_shift, "days")) + logger::log_info(paste("Calculating exposure days. Adjusting exposures by", time_shift, "days")) dt_lookup <- private$data[, .( - exposure_date = min(last_exp_date) - time_shift), + exposure_day = min(last_exp_day) - time_shift), by = c(private$all_formula_vars, "pid")] dt_out <- merge(dt_params_ind_traj, dt_lookup, by = "pid") dt_out[ - , calendar_date := exposure_date + t, + , calendar_day := exposure_day + time_since_last_exp, by = c(private$all_formula_vars, "pid", "titre_type")] if (summarise) { logger::log_info("Resampling") dt_out <- dt_out[ !is.nan(mu), .(pop_mu_sum = mean(mosaic::resample(mu))), - by = c("calendar_date", "draw", "titre_type")] + by = c("calendar_day", "draw", "titre_type")] logger::log_info("Summarising into population quantiles") dt_out <- summarise_draws( dt_out, column_name = "pop_mu_sum", - by = c("calendar_date", "titre_type")) + by = c("calendar_day", "titre_type")) } dt_out[, time_shift := time_shift] diff --git a/R/datetime-utils.R b/R/datetime-utils.R new file mode 100644 index 0000000..ab091eb --- /dev/null +++ b/R/datetime-utils.R @@ -0,0 +1,3 @@ +combine_data <- function(dat_sero, dat_inf) { + +} diff --git a/R/validation.R b/R/validation.R index 6e2a792..b05cf2c 100644 --- a/R/validation.R +++ b/R/validation.R @@ -31,7 +31,7 @@ validate_formula_vars <- function(formula_vars, data) { } validate_required_cols <- function(dat) { - required_cols <- c("pid", "date", "last_exp_date", "titre_type", "value", "censored") + required_cols <- c("pid", "day", "last_exp_day", "titre_type", "value", "censored") missing_cols <- required_cols[!(required_cols %in% colnames(dat))] if (length(missing_cols) > 0) { stop(paste("Missing required columns:", diff --git a/README.md b/README.md index b3cddcd..2f403c9 100644 --- a/README.md +++ b/README.md @@ -83,7 +83,7 @@ devtools::test() For snapshot testing of stan model outputs, we need the outputs to be exactly reproducible. As well as setting a seed, this requires the machine environment -to be exactly the same, so we run these inside a Docker container, via a bash script: +to be exactly the same, so on CI we run these inside a Docker container, via a bash script: ```{shell} ./tests/snapshots/test-snapshots diff --git a/inst/delta_full.rds b/inst/delta_full.rds index f5f7f30..97a6b1a 100644 --- a/inst/delta_full.rds +++ b/inst/delta_full.rds @@ -1,4 +1,4 @@ -pid,date,last_exp_date,titre_type,value,censored,infection_history,last_vax_type,exp_num +pid,day,last_exp_day,titre_type,value,censored,infection_history,last_vax_type,exp_num 1,2021-03-10,2021-03-08,Ancestral,175.9349878,0,Infection naive,BNT162b2,2 1,2021-04-15,2021-03-08,Ancestral,607.57499,0,Infection naive,BNT162b2,2 1,2021-07-08,2021-03-08,Ancestral,179.0462942,0,Infection naive,BNT162b2,2 diff --git a/snapshot-tests.Dockerfile b/snapshot-tests.Dockerfile index 8064fe0..7eaa348 100644 --- a/snapshot-tests.Dockerfile +++ b/snapshot-tests.Dockerfile @@ -11,6 +11,4 @@ COPY DESCRIPTION /epikinetics RUN Rscript -e "devtools::install_deps()" RUN Rscript -e "install.packages('decor')" -COPY . /epikinetics -COPY tests/snapshots/test-snapshots.R /epikinetics/tests/testthat -COPY tests/snapshots/_snaps /epikinetics/tests/testhat \ No newline at end of file +COPY . /epikinetics \ No newline at end of file diff --git a/tests/snapshots/_snaps/snapshots.md b/tests/snapshots/_snaps/snapshots.md deleted file mode 100644 index 9795fd6..0000000 --- a/tests/snapshots/_snaps/snapshots.md +++ /dev/null @@ -1,81 +0,0 @@ -# Model fits are the same - - Code - delta - Output - variable mean median sd mad q5 q95 rhat ess_bulk - lp__ -1184.11 -1178.54 58.33 56.66 -1277.41 -1101.09 1.09 35 - t0_pop[1] 4.11 4.11 0.27 0.30 3.69 4.56 1.03 155 - t0_pop[2] 4.77 4.77 0.26 0.26 4.33 5.17 1.04 72 - t0_pop[3] 3.50 3.49 0.29 0.30 3.04 3.97 1.01 324 - tp_pop[1] 9.51 9.53 0.70 0.73 8.27 10.57 1.07 40 - tp_pop[2] 10.74 10.74 0.64 0.64 9.71 11.78 1.08 37 - tp_pop[3] 8.84 8.84 0.84 0.88 7.47 10.14 1.08 40 - ts_pop_delta[1] 52.74 52.69 2.75 2.71 48.15 57.29 1.00 494 - ts_pop_delta[2] 61.67 61.58 2.82 2.95 56.79 66.53 1.01 142 - ts_pop_delta[3] 49.86 49.73 2.65 2.68 45.61 54.34 1.01 355 - ess_tail - 103 - 289 - 220 - 412 - 340 - 307 - 227 - 416 - 370 - 348 - - # showing 10 of 10103 rows (change via 'max_rows' argument or 'cmdstanr_max_rows' option) - -# Population trajectories are the same - - Code - trajectories - Output - t me lo hi titre_type - - 1: 0 76.25839 56.51254 102.5247 Ancestral - 2: 1 94.45253 72.00175 121.8491 Ancestral - 3: 2 116.75048 90.41975 144.7452 Ancestral - 4: 3 144.43023 113.33132 180.0799 Ancestral - 5: 4 178.01885 141.05339 224.6319 Ancestral - --- - 902: 146 163.39995 128.89520 201.2052 Delta - 903: 147 162.78005 128.23676 200.4452 Delta - 904: 148 162.15565 127.58168 199.7415 Delta - 905: 149 161.54259 126.92995 199.2712 Delta - 906: 150 160.95822 126.28154 198.8112 Delta - infection_history - - 1: Infection naive - 2: Infection naive - 3: Infection naive - 4: Infection naive - 5: Infection naive - --- - 902: Previously infected (Pre-Omicron) - 903: Previously infected (Pre-Omicron) - 904: Previously infected (Pre-Omicron) - 905: Previously infected (Pre-Omicron) - 906: Previously infected (Pre-Omicron) - -# Individual trajectories are the same - - Code - trajectories - Output - calendar_date titre_type me lo hi time_shift - - 1: 2021-03-08 Ancestral 543.79451 433.09823 670.4975 0 - 2: 2021-03-09 Ancestral 528.88463 429.80874 653.8752 0 - 3: 2021-03-10 Ancestral 545.26438 444.31407 665.8502 0 - 4: 2021-03-11 Ancestral 522.29561 418.67869 631.7992 0 - 5: 2021-03-12 Ancestral 531.74586 423.99750 648.3266 0 - --- - 1775: 2022-08-07 Delta 91.77050 31.07070 429.5746 0 - 1776: 2022-08-08 Delta 91.18062 31.07408 424.9366 0 - 1777: 2022-08-09 Delta 94.16216 31.29551 426.2925 0 - 1778: 2022-08-10 Delta 90.74115 30.39902 426.8355 0 - 1779: 2022-08-11 Delta 92.97980 28.91787 438.0270 0 - diff --git a/tests/testthat/_snaps/snapshots.md b/tests/testthat/_snaps/snapshots.md new file mode 100644 index 0000000..3c4480e --- /dev/null +++ b/tests/testthat/_snaps/snapshots.md @@ -0,0 +1,81 @@ +# Model fits are the same + + Code + delta + Output + variable mean median sd mad q5 q95 rhat ess_bulk + lp__ -1174.70 -1176.14 50.78 53.93 -1251.74 -1090.28 1.08 34 + t0_pop[1] 4.13 4.13 0.28 0.27 3.66 4.55 1.02 201 + t0_pop[2] 4.80 4.83 0.26 0.27 4.37 5.22 1.02 173 + t0_pop[3] 3.52 3.51 0.28 0.27 3.09 3.99 1.02 189 + tp_pop[1] 9.52 9.53 0.65 0.66 8.54 10.56 1.01 200 + tp_pop[2] 10.72 10.74 0.63 0.59 9.68 11.70 1.02 215 + tp_pop[3] 8.91 8.91 0.73 0.75 7.71 10.11 1.00 253 + ts_pop_delta[1] 52.70 52.57 2.56 2.32 48.91 57.15 1.00 349 + ts_pop_delta[2] 61.50 61.35 2.65 2.72 57.32 65.69 1.00 327 + ts_pop_delta[3] 50.15 50.21 2.61 2.66 45.77 54.31 1.00 329 + ess_tail + 111 + 340 + 301 + 264 + 247 + 199 + 368 + 403 + 360 + 331 + + # showing 10 of 10103 rows (change via 'max_rows' argument or 'cmdstanr_max_rows' option) + +# Population trajectories are the same + + Code + trajectories + Output + t me lo hi titre_type + + 1: 0 75.60473 57.18538 98.67432 Ancestral + 2: 1 93.45106 73.95371 119.73536 Ancestral + 3: 2 115.78921 93.98541 144.80589 Ancestral + 4: 3 143.32611 116.92203 178.46907 Ancestral + 5: 4 178.27950 146.07233 220.82064 Ancestral + --- + 902: 146 162.44845 128.80162 200.22728 Delta + 903: 147 161.79766 128.30153 199.51119 Delta + 904: 148 161.15433 127.80338 198.86864 Delta + 905: 149 160.66958 127.30716 198.22817 Delta + 906: 150 159.99208 126.81288 197.58975 Delta + infection_history + + 1: Infection naive + 2: Infection naive + 3: Infection naive + 4: Infection naive + 5: Infection naive + --- + 902: Previously infected (Pre-Omicron) + 903: Previously infected (Pre-Omicron) + 904: Previously infected (Pre-Omicron) + 905: Previously infected (Pre-Omicron) + 906: Previously infected (Pre-Omicron) + +# Individual trajectories are the same + + Code + trajectories + Output + calendar_day titre_type me lo hi time_shift + + 1: 2021-03-08 Ancestral 537.64994 427.22113 657.8683 0 + 2: 2021-03-09 Ancestral 522.51435 421.14547 653.5493 0 + 3: 2021-03-10 Ancestral 542.12465 439.50193 668.6812 0 + 4: 2021-03-11 Ancestral 522.11912 432.77731 643.5820 0 + 5: 2021-03-12 Ancestral 526.98594 421.46465 637.5343 0 + --- + 1775: 2022-08-07 Delta 84.55922 30.75784 317.8574 0 + 1776: 2022-08-08 Delta 86.74586 29.61217 322.3420 0 + 1777: 2022-08-09 Delta 86.13082 31.87980 319.2163 0 + 1778: 2022-08-10 Delta 84.68752 28.99385 312.2929 0 + 1779: 2022-08-11 Delta 84.58911 30.75438 320.1563 0 + diff --git a/tests/testthat/_snaps/snapshots.new.md b/tests/testthat/_snaps/snapshots.new.md new file mode 100644 index 0000000..ce37820 --- /dev/null +++ b/tests/testthat/_snaps/snapshots.new.md @@ -0,0 +1,81 @@ +# Model fits are the same + + Code + delta + Output + variable mean median sd mad q5 q95 rhat ess_bulk + lp__ -1174.70 -1176.14 50.78 53.93 -1251.74 -1090.28 1.08 34 + t0_pop[1] 4.13 4.13 0.28 0.27 3.66 4.55 1.02 201 + t0_pop[2] 4.80 4.83 0.26 0.27 4.37 5.22 1.02 173 + t0_pop[3] 3.52 3.51 0.28 0.27 3.09 3.99 1.02 189 + tp_pop[1] 9.52 9.53 0.65 0.66 8.54 10.56 1.01 200 + tp_pop[2] 10.72 10.74 0.63 0.59 9.68 11.70 1.02 215 + tp_pop[3] 8.91 8.91 0.73 0.75 7.71 10.11 1.00 253 + ts_pop_delta[1] 52.70 52.57 2.56 2.32 48.91 57.15 1.00 349 + ts_pop_delta[2] 61.50 61.35 2.65 2.72 57.32 65.69 1.00 327 + ts_pop_delta[3] 50.15 50.21 2.61 2.66 45.77 54.31 1.00 329 + ess_tail + 111 + 340 + 301 + 264 + 247 + 199 + 368 + 403 + 360 + 331 + + # showing 10 of 10103 rows (change via 'max_rows' argument or 'cmdstanr_max_rows' option) + +# Population trajectories are the same + + Code + trajectories + Output + time_since_last_exp me lo hi titre_type + + 1: 0 121.1892 94.45425 154.0367 Alpha + 2: 1 150.7446 121.39549 186.0631 Alpha + 3: 2 188.0531 155.65597 228.6746 Alpha + 4: 3 233.8627 196.06447 281.9184 Alpha + 5: 4 291.1750 244.87488 347.7999 Alpha + --- + 902: 146 162.4485 128.80162 200.2273 Delta + 903: 147 161.7977 128.30153 199.5112 Delta + 904: 148 161.1543 127.80338 198.8686 Delta + 905: 149 160.6696 127.30716 198.2282 Delta + 906: 150 159.9921 126.81288 197.5898 Delta + infection_history + + 1: Infection naive + 2: Infection naive + 3: Infection naive + 4: Infection naive + 5: Infection naive + --- + 902: Previously infected (Pre-Omicron) + 903: Previously infected (Pre-Omicron) + 904: Previously infected (Pre-Omicron) + 905: Previously infected (Pre-Omicron) + 906: Previously infected (Pre-Omicron) + +# Individual trajectories are the same + + Code + trajectories + Output + calendar_day titre_type me lo hi time_shift + + 1: 2021-03-08 Alpha 1179.41596 898.59408 1592.5041 0 + 2: 2021-03-09 Alpha 1158.69205 865.99919 1558.7359 0 + 3: 2021-03-10 Alpha 1208.48440 953.30901 1520.2822 0 + 4: 2021-03-11 Alpha 1154.03970 900.55636 1490.7134 0 + 5: 2021-03-12 Alpha 1166.98651 885.90001 1506.8642 0 + --- + 1775: 2022-08-07 Delta 82.89897 31.27422 308.8199 0 + 1776: 2022-08-08 Delta 84.04324 30.86336 312.8336 0 + 1777: 2022-08-09 Delta 84.28422 30.20377 319.3140 0 + 1778: 2022-08-10 Delta 86.52412 29.56398 320.8826 0 + 1779: 2022-08-11 Delta 86.69664 31.20098 317.9618 0 + diff --git a/tests/testthat/test-data.R b/tests/testthat/test-data.R index 1824374..d4e970c 100644 --- a/tests/testthat/test-data.R +++ b/tests/testthat/test-data.R @@ -11,8 +11,7 @@ test_that("Can construct stan data", { mod <- biokinetics$new(data = dt, priors = biokinetics_priors(), covariate_formula = ~0 + infection_history, - preds_sd = 0.25, - time_type = "relative") + preds_sd = 0.25) # the fit function has been mocked above to return the stan inputs stan_dt <- mod$fit() expect_equal(stan_dt$N_events, 335) diff --git a/tests/testthat/test-input-validation.R b/tests/testthat/test-input-validation.R index 78c8dde..edb439f 100644 --- a/tests/testthat/test-input-validation.R +++ b/tests/testthat/test-input-validation.R @@ -17,11 +17,6 @@ test_that("preds_sd must be numeric", { "'preds_sd' must be numeric") }) -test_that("Time type must be 'absolute' or 'relative'", { - expect_error(biokinetics$new(time_type = "bad"), - "'time_type' must be one of 'relative' or 'absolute'") -}) - test_that("Covariate formula must be a formula", { dat <- data.table(test = 1) expect_error(biokinetics$new(data = dat, covariate_formula = "bad"), @@ -36,7 +31,7 @@ test_that("Covariates must be present in data", { test_that("Required columns must be present in data", { dat <- data.table(test = 1) expect_error(biokinetics$new(data = dat, covariate_formula = 0~ bad), - "Missing required columns: pid, date, last_exp_date, titre_type, value, censored") + "Missing required columns: pid, day, last_exp_day, titre_type, value, censored") }) test_that("Data must be a data.table", { diff --git a/tests/testthat/test-relative-dates.R b/tests/testthat/test-relative-dates.R new file mode 100644 index 0000000..4e46099 --- /dev/null +++ b/tests/testthat/test-relative-dates.R @@ -0,0 +1,28 @@ +test_that("Using relative and absolute dates gives the same answer", { + # these take a while, so don't run on CI + skip_on_ci() + dat_absolute <- data.table::fread(test_path("testdata", "delta_full_relative.rds")) + mod_absolute <- biokinetics$new(data = dat_absolute, covariate_formula = ~0 + infection_history) + delta_absolute <- mod_absolute$fit(parallel_chains = 4, + iter_warmup = 50, + iter_sampling = 100, + seed = 100) + + set.seed(1) + trajectories_absolute <- mod_absolute$simulate_individual_trajectories() + + dat_relative <- data.table::fread(system.file("delta_full_relative.rds", package = "epikinetics")) + mod_relative <- biokinetics$new(data = dat_relative, covariate_formula = ~0 + infection_history) + delta_relative <- mod_relative$fit(parallel_chains = 4, + iter_warmup = 50, + iter_sampling = 100, + seed = 100) + + min_date <- min(dat_absolute$day) + + set.seed(1) + trajectories_relative <- mod_relative$simulate_individual_trajectories() + trajectories_relative$calendar_day <- as.integer(mindate + trajectories_relative$calendar_day, units = "days") + + expect_equal(trajectories_relative, trajectories_absolute) +}) diff --git a/tests/testthat/test-run-model.R b/tests/testthat/test-run-model.R index ef65b68..d102c63 100644 --- a/tests/testthat/test-run-model.R +++ b/tests/testthat/test-run-model.R @@ -45,15 +45,15 @@ test_that("Can process model fits with no covariates", { threads_per_chain = 4) pt <- mod$simulate_population_trajectories(n_draws = 100, summarise = FALSE) - expect_equal(names(pt), c("t", ".draw", "t0_pop", "tp_pop", "ts_pop", "m1_pop", "m2_pop", + expect_equal(names(pt), c("time_since_last_exp", ".draw", "t0_pop", "tp_pop", "ts_pop", "m1_pop", "m2_pop", "m3_pop", "mu", "titre_type")) pt <- mod$simulate_population_trajectories(n_draws = 100, summarise = TRUE) - expect_equal(names(pt), c("t", "me", "lo", "hi", "titre_type")) + expect_equal(names(pt), c("time_since_last_exp", "me", "lo", "hi", "titre_type")) it <- mod$simulate_individual_trajectories(n_draws = 100, summarise = FALSE) - expect_equal(names(it), c("pid", "draw", "t", "mu", "titre_type", - "exposure_date", "calendar_date", "time_shift")) + expect_equal(names(it), c("pid", "draw", "time_since_last_exp", "mu", "titre_type", + "exposure_day", "calendar_day", "time_shift")) # it <- mod$simulate_individual_trajectories(n_draws = 100, summarise = TRUE) # expect_equal(names(it), c("calendar_date", "titre_type", "me", "lo", "hi", "time_shift")) @@ -76,10 +76,10 @@ test_that("Can process model fits with multiple covariates", { threads_per_chain = 4) pt <- mod$simulate_population_trajectories(n_draws = 100) - expect_equal(names(pt), c("t", "me", "lo", "hi", "titre_type", "infection_history", "last_vax_type")) + expect_equal(names(pt), c("time_since_last_exp", "me", "lo", "hi", "titre_type", "infection_history", "last_vax_type")) it <- mod$simulate_individual_trajectories(n_draws = 100) - expect_equal(names(it), c("calendar_date", "titre_type", "me", "lo", "hi", "time_shift")) + expect_equal(names(it), c("calendar_day", "titre_type", "me", "lo", "hi", "time_shift")) sp <- mod$population_stationary_points() expect_equal(names(sp), c("infection_history", "last_vax_type", "titre_type", diff --git a/tests/testthat/test-simulate-individual-trajectories.R b/tests/testthat/test-simulate-individual-trajectories.R index 40fa5d8..dec0046 100644 --- a/tests/testthat/test-simulate-individual-trajectories.R +++ b/tests/testthat/test-simulate-individual-trajectories.R @@ -52,7 +52,7 @@ test_that("Can retrieve summarised trajectories", { covariate_formula = ~0 + infection_history) mod$fit() trajectories <- mod$simulate_individual_trajectories(summarise = TRUE, n_draws = 10) - expect_equal(names(trajectories), c("calendar_date", "titre_type", "me", "lo", "hi", "time_shift")) + expect_equal(names(trajectories), c("calendar_day", "titre_type", "me", "lo", "hi", "time_shift")) }) test_that("Can retrieve un-summarised trajectories", { @@ -60,8 +60,8 @@ test_that("Can retrieve un-summarised trajectories", { covariate_formula = ~0 + infection_history) mod$fit() trajectories <- mod$simulate_individual_trajectories(summarise = FALSE, n_draws = 10) - expect_equal(names(trajectories), c("pid", "draw", "t", "mu", "titre_type", "infection_history", - "exposure_date", "calendar_date", "time_shift")) + expect_equal(names(trajectories), c("pid", "draw", "time_since_last_exp", "mu", "titre_type", "infection_history", + "exposure_day", "calendar_day", "time_shift")) }) test_that("Only n_draws draws are returned", { diff --git a/tests/testthat/test-simulate-population-trajectories.R b/tests/testthat/test-simulate-population-trajectories.R index cc0addb..246d392 100644 --- a/tests/testthat/test-simulate-population-trajectories.R +++ b/tests/testthat/test-simulate-population-trajectories.R @@ -17,7 +17,6 @@ test_that("Validates inputs", { mod$fit() expect_error(mod$simulate_population_trajectories(summarise = "bad"), "'summarise' must be logical") expect_error(mod$simulate_population_trajectories(n_draws = "bad"), "'n_draws' must be numeric") - expect_error(mod$simulate_population_trajectories(time_type = "bad"), "'time_type' must be one of 'relative' or 'absolute'") expect_error(mod$simulate_population_trajectories(t_max = "bad"), "'t_max' must be numeric") }) @@ -26,7 +25,7 @@ test_that("Can retrieve summarised trajectories", { covariate_formula = ~0 + infection_history) mod$fit() trajectories <- mod$simulate_population_trajectories(summarise = TRUE) - expect_equal(names(trajectories), c("t", "me", "lo", "hi", "titre_type", "infection_history")) + expect_equal(names(trajectories), c("time_since_last_exp", "me", "lo", "hi", "titre_type", "infection_history")) }) test_that("Can retrieve un-summarised trajectories", { @@ -34,20 +33,11 @@ test_that("Can retrieve un-summarised trajectories", { covariate_formula = ~0 + infection_history) mod$fit() trajectories <- mod$simulate_population_trajectories(summarise = FALSE) - expect_equal(names(trajectories), c("t", ".draw", "t0_pop", "tp_pop", "ts_pop", "m1_pop", "m2_pop", + expect_equal(names(trajectories), c("time_since_last_exp", ".draw", "t0_pop", "tp_pop", "ts_pop", "m1_pop", "m2_pop", "m3_pop", "beta_t0", "beta_tp", "beta_ts", "beta_m1", "beta_m2", "beta_m3", "mu", "titre_type", "infection_history")) }) -test_that("Absolute dates are returned if time_type is 'absolute'", { - mod <- biokinetics$new(file_path = system.file("delta_full.rds", package = "epikinetics"), - covariate_formula = ~0 + infection_history) - mod$fit() - trajectories <- mod$simulate_population_trajectories(summarise = TRUE, time_type = "absolute") - expect_equal(class(trajectories$date), c("IDate", "Date")) - expect_equal(trajectories$date, data.table::as.IDate("2021-01-29") + trajectories$t) -}) - test_that("Only times up to t_max are returned", { mod <- biokinetics$new(file_path = system.file("delta_full.rds", package = "epikinetics"), covariate_formula = ~0 + infection_history) diff --git a/tests/snapshots/test-snapshots.R b/tests/testthat/test-snapshots.R similarity index 65% rename from tests/snapshots/test-snapshots.R rename to tests/testthat/test-snapshots.R index 3e8f91f..b618f16 100644 --- a/tests/snapshots/test-snapshots.R +++ b/tests/testthat/test-snapshots.R @@ -1,9 +1,12 @@ -instantiate::stan_package_compile( - models = instantiate::stan_package_model_files(path = "/epikinetics/bin/stan"), - cpp_options = list(stan_threads = TRUE), - stanc_options = list("O1"), - force_recompile = TRUE -) +if (fs::dir_exists("/epikinetics/bin/stan")) { + # running in Docker, so recompile the models + instantiate::stan_package_compile( + models = instantiate::stan_package_model_files(path = "/epikinetics/bin/stan"), + cpp_options = list(stan_threads = TRUE), + stanc_options = list("O1"), + force_recompile = TRUE + ) +} dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) mod <- biokinetics$new(data = dat, covariate_formula = ~0 + infection_history) delta <- mod$fit(parallel_chains = 4, @@ -14,16 +17,19 @@ delta <- mod$fit(parallel_chains = 4, local_edition(3) test_that("Model fits are the same", { + skip_on_ci() expect_snapshot(delta) }) test_that("Population trajectories are the same", { + skip_on_ci() set.seed(1) trajectories <- mod$simulate_population_trajectories() expect_snapshot(trajectories) }) test_that("Individual trajectories are the same", { + skip_on_ci() set.seed(1) trajectories <- mod$simulate_individual_trajectories() expect_snapshot(trajectories) diff --git a/tests/testthat/testdata/delta_full_relative.rds b/tests/testthat/testdata/delta_full_relative.rds new file mode 100644 index 0000000..6d2ad1b --- /dev/null +++ b/tests/testthat/testdata/delta_full_relative.rds @@ -0,0 +1,2256 @@ +pid,day,last_exp_day,titre_type,value,censored,infection_history,last_vax_type,exp_num +1,40,38,Ancestral,175.9349878,0,Infection naive,BNT162b2,2 +1,76,38,Ancestral,607.57499,0,Infection naive,BNT162b2,2 +1,160,38,Ancestral,179.0462942,0,Infection naive,BNT162b2,2 +1,40,38,Alpha,5,-1,Infection naive,BNT162b2,2 +1,76,38,Alpha,416.790471100001,0,Infection naive,BNT162b2,2 +1,160,38,Alpha,103.5273976,0,Infection naive,BNT162b2,2 +1,40,38,Delta,5,-1,Infection naive,BNT162b2,2 +1,76,38,Delta,288.1785015,0,Infection naive,BNT162b2,2 +1,160,38,Delta,128.8900265,0,Infection naive,BNT162b2,2 +2,25,-18,Ancestral,595.449313599998,0,Infection naive,BNT162b2,2 +2,46,-18,Ancestral,430.528648299999,0,Infection naive,BNT162b2,2 +2,88,-18,Ancestral,198.2081189,0,Infection naive,BNT162b2,2 +2,179,-18,Ancestral,110.3680043,0,Infection naive,BNT162b2,2 +2,25,-18,Alpha,189.0453557,0,Infection naive,BNT162b2,2 +2,46,-18,Alpha,142.9343886,0,Infection naive,BNT162b2,2 +2,88,-18,Alpha,133.8404918,0,Infection naive,BNT162b2,2 +2,179,-18,Alpha,93.9296002800003,0,Infection naive,BNT162b2,2 +2,25,-18,Delta,72.02175288,0,Infection naive,BNT162b2,2 +2,46,-18,Delta,92.7027533499997,0,Infection naive,BNT162b2,2 +2,88,-18,Delta,46.2628491,0,Infection naive,BNT162b2,2 +2,179,-18,Delta,54.55012061,0,Infection naive,BNT162b2,2 +3,87,53,Ancestral,1624.411259,0,Infection naive,BNT162b2,2 +3,171,53,Ancestral,1023.505653,0,Infection naive,BNT162b2,2 +3,87,53,Alpha,1095.926476,0,Infection naive,BNT162b2,2 +3,171,53,Alpha,961.753256300001,0,Infection naive,BNT162b2,2 +3,87,53,Delta,965.977355399999,0,Infection naive,BNT162b2,2 +3,171,53,Delta,643.758814500001,0,Infection naive,BNT162b2,2 +4,47,26,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +4,88,26,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +4,172,26,Ancestral,930.247978699997,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,47,26,Alpha,2294.428243,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,88,26,Alpha,1049.854881,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,172,26,Alpha,933.515125899998,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,47,26,Delta,694.1600408,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,88,26,Delta,452.981126300002,0,Previously infected (Pre-Omicron),BNT162b2,3 +4,172,26,Delta,734.212202300003,0,Previously infected (Pre-Omicron),BNT162b2,3 +5,6,-18,Ancestral,2560,1,Infection naive,BNT162b2,2 +5,53,-18,Ancestral,426.024114999999,0,Infection naive,BNT162b2,2 +5,103,-18,Ancestral,213.5390003,0,Infection naive,BNT162b2,2 +5,187,-18,Ancestral,368.0142372,0,Infection naive,BNT162b2,2 +5,6,-18,Alpha,540.7202473,0,Infection naive,BNT162b2,2 +5,53,-18,Alpha,415.331774000001,0,Infection naive,BNT162b2,2 +5,103,-18,Alpha,250.909971299999,0,Infection naive,BNT162b2,2 +5,187,-18,Alpha,183.9779073,0,Infection naive,BNT162b2,2 +5,6,-18,Delta,311.83196,0,Infection naive,BNT162b2,2 +5,53,-18,Delta,280.4537432,0,Infection naive,BNT162b2,2 +5,103,-18,Delta,110.5616476,0,Infection naive,BNT162b2,2 +5,187,-18,Delta,79.1725334000003,0,Infection naive,BNT162b2,2 +6,41,41,Ancestral,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +6,41,41,Alpha,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +6,41,41,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +7,124,93,Ancestral,115.312395150577,0,Infection naive,AZD1222,1 +7,124,93,Alpha,69.1756913491035,0,Infection naive,AZD1222,1 +7,124,93,Delta,5,-1,Infection naive,AZD1222,1 +8,133,97,Ancestral,209.0939465,0,Previously infected (Pre-Omicron),AZD1222,3 +8,159,97,Ancestral,50.10396289,0,Previously infected (Pre-Omicron),AZD1222,3 +8,133,97,Alpha,5,-1,Previously infected (Pre-Omicron),AZD1222,3 +8,133,97,Delta,5,-1,Previously infected (Pre-Omicron),AZD1222,3 +8,159,97,Delta,5,-1,Previously infected (Pre-Omicron),AZD1222,3 +8,234,97,Delta,5,-1,Previously infected (Pre-Omicron),AZD1222,3 +9,4,-24,Ancestral,657.444254099999,0,Infection naive,BNT162b2,2 +9,25,-24,Ancestral,934.333704000001,0,Infection naive,BNT162b2,2 +9,67,-24,Ancestral,399.619148699999,0,Infection naive,BNT162b2,2 +9,4,-24,Alpha,396.131820300001,0,Infection naive,BNT162b2,2 +9,25,-24,Alpha,282.922704900001,0,Infection naive,BNT162b2,2 +9,4,-24,Delta,316.513164100001,0,Infection naive,BNT162b2,2 +9,25,-24,Delta,306.681909900001,0,Infection naive,BNT162b2,2 +9,67,-24,Delta,174.2468752,0,Infection naive,BNT162b2,2 +10,117,75,Ancestral,2232.92503000001,0,Previously infected (Pre-Omicron),AZD1222,2 +10,117,75,Alpha,607.57498998905,0,Previously infected (Pre-Omicron),AZD1222,2 +10,117,75,Delta,2560,1,Previously infected (Pre-Omicron),AZD1222,2 +11,80,54,Ancestral,913.282125200002,0,Infection naive,BNT162b2,2 +11,150,54,Ancestral,413.878182099999,0,Infection naive,BNT162b2,2 +11,237,54,Ancestral,165.610148600001,0,Infection naive,BNT162b2,2 +11,80,54,Alpha,462.6108909,0,Infection naive,BNT162b2,2 +11,150,54,Alpha,203.4890863,0,Infection naive,BNT162b2,2 +11,237,54,Alpha,198.555879680297,0,Infection naive,BNT162b2,2 +11,80,54,Delta,226.8519274,0,Infection naive,BNT162b2,2 +11,150,54,Delta,128.5515581,0,Infection naive,BNT162b2,2 +11,237,54,Delta,127.5414765,0,Infection naive,BNT162b2,2 +12,46,43,Ancestral,253.785292299999,0,Infection naive,BNT162b2,2 +12,46,43,Alpha,48.0397331146746,0,Infection naive,BNT162b2,2 +12,46,43,Delta,47.70405944,0,Infection naive,BNT162b2,2 +13,84,83,Ancestral,121.1135496,0,Previously infected (Pre-Omicron),BNT162b2,3 +13,84,83,Alpha,60.8130894204273,0,Previously infected (Pre-Omicron),BNT162b2,3 +13,84,83,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +14,27,-22,Ancestral,197.860967200001,0,Infection naive,BNT162b2,2 +14,27,-22,Alpha,172.7262873,0,Infection naive,BNT162b2,2 +14,48,-22,Alpha,132.0923549,0,Infection naive,BNT162b2,2 +14,27,-22,Delta,45.3395584000001,0,Infection naive,BNT162b2,2 +14,48,-22,Delta,45.41910771,0,Infection naive,BNT162b2,2 +15,38,28,Ancestral,1526.40370200001,0,Infection naive,BNT162b2,2 +15,77,28,Ancestral,662.070416499999,0,Infection naive,BNT162b2,2 +15,164,28,Ancestral,106.0995805,0,Infection naive,BNT162b2,2 +15,248,28,Ancestral,129.342704377527,0,Infection naive,BNT162b2,2 +15,38,28,Alpha,974.481292799999,0,Infection naive,BNT162b2,2 +15,77,28,Alpha,798.6648664,0,Infection naive,BNT162b2,2 +15,164,28,Alpha,51.5743457200001,0,Infection naive,BNT162b2,2 +15,248,28,Alpha,95.6745110753895,0,Infection naive,BNT162b2,2 +15,38,28,Delta,334.482275799999,0,Infection naive,BNT162b2,2 +15,77,28,Delta,311.013081500001,0,Infection naive,BNT162b2,2 +15,164,28,Delta,45.8591303399999,0,Infection naive,BNT162b2,2 +15,248,28,Delta,5,-1,Infection naive,BNT162b2,2 +16,80,53,Ancestral,2560,1,Infection naive,BNT162b2,2 +16,151,53,Ancestral,281.438731800001,0,Infection naive,BNT162b2,2 +16,80,53,Alpha,971.922280699998,0,Infection naive,BNT162b2,2 +16,151,53,Alpha,524.384287100001,0,Infection naive,BNT162b2,2 +16,80,53,Delta,467.092688800001,0,Infection naive,BNT162b2,2 +16,151,53,Delta,344.2982058,0,Infection naive,BNT162b2,2 +17,76,45,Ancestral,780.670057600001,0,Infection naive,BNT162b2,2 +17,150,45,Ancestral,224.478422,0,Infection naive,BNT162b2,2 +17,76,45,Alpha,1123.155242,0,Infection naive,BNT162b2,2 +17,150,45,Alpha,201.8901902,0,Infection naive,BNT162b2,2 +17,76,45,Delta,389.931141,0,Infection naive,BNT162b2,2 +17,150,45,Delta,161.1708918,0,Infection naive,BNT162b2,2 +18,42,31,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +18,67,31,Ancestral,944.2128099,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,42,31,Alpha,617.236638700002,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,67,31,Alpha,599.6392433,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,109,31,Alpha,221.3523331,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,193,31,Alpha,155.7546505,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,42,31,Delta,369.630585900001,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,67,31,Delta,199.078665199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,109,31,Delta,76.04389667,0,Previously infected (Pre-Omicron),BNT162b2,3 +18,193,31,Delta,47.4954555099999,0,Previously infected (Pre-Omicron),BNT162b2,3 +19,69,28,Ancestral,2560,1,Infection naive,BNT162b2,2 +19,144,28,Ancestral,122.9316995,0,Infection naive,BNT162b2,2 +19,69,28,Alpha,186.9035213,0,Infection naive,BNT162b2,2 +19,144,28,Alpha,121.538915500001,0,Infection naive,BNT162b2,2 +19,69,28,Delta,155.7546505,0,Infection naive,BNT162b2,2 +19,144,28,Delta,86.3494333899999,0,Infection naive,BNT162b2,2 +20,77,39,Ancestral,791.001602599998,0,Infection naive,BNT162b2,2 +20,237,39,Ancestral,141.811295282677,0,Infection naive,BNT162b2,2 +20,263,39,Ancestral,130.8249164,0,Infection naive,BNT162b2,2 +20,77,39,Alpha,810.654379200002,0,Infection naive,BNT162b2,2 +20,237,39,Alpha,163.447057328495,0,Infection naive,BNT162b2,2 +20,263,39,Alpha,81.1396092100002,0,Infection naive,BNT162b2,2 +20,77,39,Delta,318.1820781,0,Infection naive,BNT162b2,2 +20,237,39,Delta,80.290662041196,0,Infection naive,BNT162b2,2 +20,263,39,Delta,45.8591303399999,0,Infection naive,BNT162b2,2 +21,80,56,Ancestral,713.279837599999,0,Infection naive,BNT162b2,2 +21,151,56,Ancestral,102.4442116,0,Infection naive,BNT162b2,2 +21,80,56,Alpha,447.8489687,0,Infection naive,BNT162b2,2 +21,151,56,Alpha,175.6268464,0,Infection naive,BNT162b2,2 +21,80,56,Delta,171.9709766,0,Infection naive,BNT162b2,2 +21,151,56,Delta,136.0880493,0,Infection naive,BNT162b2,2 +22,80,39,Ancestral,200.1283693,0,Previously infected (Pre-Omicron),AZD1222,2 +22,80,39,Alpha,67.0270167161586,0,Previously infected (Pre-Omicron),AZD1222,2 +22,80,39,Delta,5,-1,Previously infected (Pre-Omicron),AZD1222,2 +23,67,30,Ancestral,97.87985316,0,Infection naive,BNT162b2,2 +23,235,30,Ancestral,81.9256938794759,0,Infection naive,BNT162b2,2 +23,67,30,Alpha,270.7914815,0,Infection naive,BNT162b2,2 +23,235,30,Alpha,5,-1,Infection naive,BNT162b2,2 +23,67,30,Delta,74.3957217499998,0,Infection naive,BNT162b2,2 +23,235,30,Delta,5,-1,Infection naive,BNT162b2,2 +24,111,83,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +24,193,83,Ancestral,483.335457300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +24,111,83,Alpha,1971.609858,0,Previously infected (Pre-Omicron),BNT162b2,3 +24,193,83,Alpha,517.535122900002,0,Previously infected (Pre-Omicron),BNT162b2,3 +24,111,83,Delta,1613.06082,0,Previously infected (Pre-Omicron),BNT162b2,3 +24,193,83,Delta,421.197373199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +25,3,-17,Ancestral,167.654854,0,Infection naive,BNT162b2,2 +25,24,-17,Ancestral,288.684117400001,0,Infection naive,BNT162b2,2 +25,67,-17,Ancestral,160.4661115,0,Infection naive,BNT162b2,2 +25,151,-17,Ancestral,157.677675,0,Infection naive,BNT162b2,2 +25,3,-17,Alpha,82.6469229800001,0,Infection naive,BNT162b2,2 +25,24,-17,Alpha,89.0394470600002,0,Infection naive,BNT162b2,2 +25,67,-17,Alpha,46.7930015600001,0,Infection naive,BNT162b2,2 +25,151,-17,Alpha,53.0878793300002,0,Infection naive,BNT162b2,2 +25,3,-17,Delta,49.4062145500001,0,Infection naive,BNT162b2,2 +25,24,-17,Delta,60.2823961099999,0,Infection naive,BNT162b2,2 +25,67,-17,Delta,54.4068706399999,0,Infection naive,BNT162b2,2 +25,151,-17,Delta,75.97727393,0,Infection naive,BNT162b2,2 +26,74,37,Ancestral,2560,1,Infection naive,BNT162b2,2 +26,74,37,Alpha,591.8071482,0,Infection naive,BNT162b2,2 +26,74,37,Delta,292.761111899999,0,Infection naive,BNT162b2,2 +27,80,44,Ancestral,205.1006451,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,151,44,Ancestral,80.4315338800003,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,242,44,Ancestral,81.7105549699998,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,80,44,Alpha,153.9899911,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,151,44,Alpha,103.4366963,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,242,44,Alpha,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +27,80,44,Delta,86.3494333899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,151,44,Delta,54.0267071200002,0,Previously infected (Pre-Omicron),BNT162b2,3 +27,242,44,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +28,4,-15,Ancestral,128.551558075558,0,Infection naive,BNT162b2,1 +28,26,-15,Ancestral,129.796972124846,0,Infection naive,BNT162b2,1 +28,4,-15,Alpha,209.828310596494,0,Infection naive,BNT162b2,1 +28,26,-15,Alpha,148.68468983509,0,Infection naive,BNT162b2,1 +28,4,-15,Delta,110.368004349061,0,Infection naive,BNT162b2,1 +28,26,-15,Delta,45.3395583998115,0,Infection naive,BNT162b2,1 +29,14,-17,Ancestral,375.837720899999,0,Infection naive,BNT162b2,2 +29,32,-17,Ancestral,306.950832300001,0,Infection naive,BNT162b2,2 +29,14,-17,Alpha,133.606076800001,0,Infection naive,BNT162b2,2 +29,32,-17,Alpha,233.1002888,0,Infection naive,BNT162b2,2 +29,73,-17,Alpha,105.7282497,0,Infection naive,BNT162b2,2 +29,14,-17,Delta,105.1736888,0,Infection naive,BNT162b2,2 +29,32,-17,Delta,162.162787600001,0,Infection naive,BNT162b2,2 +29,73,-17,Delta,94.0119650100003,0,Infection naive,BNT162b2,2 +30,5,-21,Ancestral,5,-1,Infection naive,BNT162b2,2 +30,26,-21,Ancestral,265.3871612,0,Infection naive,BNT162b2,2 +30,5,-21,Alpha,170.769343600001,0,Infection naive,BNT162b2,2 +30,26,-21,Alpha,169.5761069,0,Infection naive,BNT162b2,2 +30,70,-21,Alpha,80.3610670899999,0,Infection naive,BNT162b2,2 +30,5,-21,Delta,130.5957831,0,Infection naive,BNT162b2,2 +30,26,-21,Delta,65.8045786499999,0,Infection naive,BNT162b2,2 +30,70,-21,Delta,73.0388933099998,0,Infection naive,BNT162b2,2 +31,84,59,Ancestral,1103.638055,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,168,59,Ancestral,529.464548799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,307,59,Ancestral,237.6387421,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,84,59,Alpha,485.458306200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,168,59,Alpha,294.304785699999,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,307,59,Alpha,226.454607549813,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,84,59,Delta,678.519842099999,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,168,59,Delta,258.953353199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +31,307,59,Delta,89.2738825000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +32,20,-19,Ancestral,869.537303600003,0,Infection naive,BNT162b2,2 +32,20,-19,Alpha,228.2480448,0,Infection naive,BNT162b2,2 +32,62,-19,Alpha,102.4442116,0,Infection naive,BNT162b2,2 +32,20,-19,Delta,129.9107881,0,Infection naive,BNT162b2,2 +32,62,-19,Delta,46.2223177999999,0,Infection naive,BNT162b2,2 +32,104,-19,Delta,71.8956103600002,0,Infection naive,BNT162b2,2 +32,199,-19,Delta,42.7911527100001,0,Infection naive,BNT162b2,2 +33,88,42,Ancestral,667.8989231,0,Infection naive,BNT162b2,2 +33,160,42,Ancestral,305.340828000001,0,Infection naive,BNT162b2,2 +33,312,42,Ancestral,171.369106900001,0,Infection naive,BNT162b2,2 +33,88,42,Alpha,554.640601099999,0,Infection naive,BNT162b2,2 +33,160,42,Alpha,191.379403800001,0,Infection naive,BNT162b2,2 +33,312,42,Alpha,224.28175447665,0,Infection naive,BNT162b2,2 +33,88,42,Delta,454.173798000001,0,Infection naive,BNT162b2,2 +33,160,42,Delta,135.255644,0,Infection naive,BNT162b2,2 +33,312,42,Delta,92.6215356399999,0,Infection naive,BNT162b2,2 +34,19,-17,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +34,40,-17,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +34,19,-17,Alpha,2041.95996799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +34,40,-17,Alpha,1606.007105,0,Previously infected (Pre-Omicron),BNT162b2,3 +34,19,-17,Delta,1262.022346,0,Previously infected (Pre-Omicron),BNT162b2,3 +34,40,-17,Delta,431.2840209,0,Previously infected (Pre-Omicron),BNT162b2,3 +35,80,68,Ancestral,232.692025200001,0,Infection naive,AZD1222,2 +35,150,68,Ancestral,258.953353199999,0,Infection naive,AZD1222,2 +35,80,68,Alpha,86.1981966500001,0,Infection naive,AZD1222,2 +35,80,68,Delta,51.8462874599999,0,Infection naive,AZD1222,2 +35,150,68,Delta,42.6413908199999,0,Infection naive,AZD1222,2 +36,53,36,Ancestral,1076.882446,0,Infection naive,BNT162b2,2 +36,81,36,Ancestral,572.922571000002,0,Infection naive,BNT162b2,2 +36,53,36,Alpha,804.284739699998,0,Infection naive,BNT162b2,2 +36,81,36,Alpha,419.355529400001,0,Infection naive,BNT162b2,2 +36,53,36,Delta,448.241677300001,0,Infection naive,BNT162b2,2 +36,81,36,Delta,168.096279000001,0,Infection naive,BNT162b2,2 +37,41,32,Ancestral,2560,1,Infection naive,BNT162b2,2 +37,68,32,Ancestral,2560,1,Infection naive,BNT162b2,2 +37,110,32,Ancestral,2560,1,Infection naive,BNT162b2,2 +37,194,32,Ancestral,186.7397735,0,Infection naive,BNT162b2,2 +37,41,32,Alpha,975.335793300001,0,Infection naive,BNT162b2,2 +37,68,32,Alpha,1182.765086,0,Infection naive,BNT162b2,2 +37,110,32,Alpha,388.907172100001,0,Infection naive,BNT162b2,2 +37,194,32,Alpha,295.856599099999,0,Infection naive,BNT162b2,2 +37,41,32,Delta,488.0180358,0,Infection naive,BNT162b2,2 +37,68,32,Delta,940.083884500002,0,Infection naive,BNT162b2,2 +37,110,32,Delta,288.684117400001,0,Infection naive,BNT162b2,2 +37,194,32,Delta,162.447306,0,Infection naive,BNT162b2,2 +38,76,55,Ancestral,1004.838967,0,Infection naive,BNT162b2,2 +38,179,55,Ancestral,192.726061299999,0,Infection naive,BNT162b2,2 +38,76,55,Alpha,441.612219099999,0,Infection naive,BNT162b2,2 +38,179,55,Alpha,117.5575229,0,Infection naive,BNT162b2,2 +38,76,55,Delta,403.490679399999,0,Infection naive,BNT162b2,2 +38,179,55,Delta,85.0723322500003,0,Infection naive,BNT162b2,2 +39,4,-17,Ancestral,2560,1,Infection naive,BNT162b2,2 +39,25,-17,Ancestral,2560,1,Infection naive,BNT162b2,2 +39,75,-17,Ancestral,1312.793954,0,Infection naive,BNT162b2,2 +39,4,-17,Alpha,2308.548869,0,Infection naive,BNT162b2,2 +39,25,-17,Alpha,1138.019305,0,Infection naive,BNT162b2,2 +39,75,-17,Alpha,1286.593871,0,Infection naive,BNT162b2,2 +39,4,-17,Delta,877.961425299999,0,Infection naive,BNT162b2,2 +39,25,-17,Delta,601.2180569,0,Infection naive,BNT162b2,2 +39,75,-17,Delta,890.360596700001,0,Infection naive,BNT162b2,2 +40,131,91,Ancestral,398.9192356,0,Infection naive,AZD1222,2 +40,159,91,Ancestral,116.5316419,0,Infection naive,AZD1222,2 +40,231,91,Ancestral,111.1446182,0,Infection naive,AZD1222,2 +40,131,91,Alpha,180.62252,0,Infection naive,AZD1222,2 +40,159,91,Alpha,116.3275425,0,Infection naive,AZD1222,2 +40,231,91,Alpha,110.8527497,0,Infection naive,AZD1222,2 +40,131,91,Delta,62.98299513,0,Infection naive,AZD1222,2 +40,159,91,Delta,45.93959126,0,Infection naive,AZD1222,2 +40,231,91,Delta,41.6076312399999,0,Infection naive,AZD1222,2 +41,80,44,Ancestral,2560,1,Infection naive,BNT162b2,2 +41,150,44,Ancestral,283.170793299999,0,Infection naive,BNT162b2,2 +41,80,44,Alpha,1754.663025,0,Infection naive,BNT162b2,2 +41,150,44,Alpha,166.629365,0,Infection naive,BNT162b2,2 +41,80,44,Delta,453.775892300001,0,Infection naive,BNT162b2,2 +41,150,44,Delta,125.3251748,0,Infection naive,BNT162b2,2 +42,119,69,Ancestral,254.899938100001,0,Previously infected (Pre-Omicron),AZD1222,3 +42,168,69,Ancestral,171.669778,0,Previously infected (Pre-Omicron),AZD1222,3 +42,119,69,Alpha,149.0761676,0,Previously infected (Pre-Omicron),AZD1222,3 +42,168,69,Alpha,118.3847264,0,Previously infected (Pre-Omicron),AZD1222,3 +42,119,69,Delta,44.20162747,0,Previously infected (Pre-Omicron),AZD1222,3 +42,168,69,Delta,60.8664150300001,0,Previously infected (Pre-Omicron),AZD1222,3 +43,84,53,Ancestral,483.759283100001,0,Infection naive,BNT162b2,2 +43,84,53,Alpha,148.9455606,0,Infection naive,BNT162b2,2 +43,84,53,Delta,109.3090131,0,Infection naive,BNT162b2,2 +44,131,91,Ancestral,130.2528353,0,Infection naive,AZD1222,2 +44,160,91,Ancestral,40.95634405,0,Infection naive,AZD1222,2 +44,131,91,Alpha,58.0018224500001,0,Infection naive,AZD1222,2 +44,160,91,Alpha,60.44111598,0,Infection naive,AZD1222,2 +44,131,91,Delta,5,-1,Infection naive,AZD1222,2 +45,77,62,Ancestral,2560,1,Infection naive,BNT162b2,2 +45,178,62,Ancestral,540.246517400001,0,Infection naive,BNT162b2,2 +45,263,62,Ancestral,651.706981500002,0,Infection naive,BNT162b2,2 +45,77,62,Alpha,2211.499906,0,Infection naive,BNT162b2,2 +45,178,62,Alpha,835.1760645,0,Infection naive,BNT162b2,2 +45,263,62,Alpha,416.790471097569,0,Infection naive,BNT162b2,2 +45,77,62,Delta,896.625694799998,0,Infection naive,BNT162b2,2 +45,178,62,Delta,394.399585100001,0,Infection naive,BNT162b2,2 +45,263,62,Delta,394.745425100001,0,Infection naive,BNT162b2,2 +46,46,46,Ancestral,144.572355573196,0,Infection naive,BNT162b2,2 +46,76,46,Ancestral,2270.422109,0,Infection naive,BNT162b2,2 +46,159,46,Ancestral,214.8531858,0,Infection naive,BNT162b2,2 +46,251,46,Ancestral,218.4611738,0,Infection naive,BNT162b2,2 +46,46,46,Alpha,66.8510021028247,0,Infection naive,BNT162b2,2 +46,76,46,Alpha,588.187260700001,0,Infection naive,BNT162b2,2 +46,159,46,Alpha,297.4165949,0,Infection naive,BNT162b2,2 +46,251,46,Alpha,185.272483477799,0,Infection naive,BNT162b2,2 +46,46,46,Delta,5,-1,Infection naive,BNT162b2,2 +46,76,46,Delta,315.4054209,0,Infection naive,BNT162b2,2 +46,159,46,Delta,130.0247039,0,Infection naive,BNT162b2,2 +46,251,46,Delta,97.7084214600002,0,Infection naive,BNT162b2,2 +47,81,50,Ancestral,1186.919105,0,Infection naive,BNT162b2,2 +47,151,50,Ancestral,501.899619800001,0,Infection naive,BNT162b2,2 +47,81,50,Alpha,1334.839449,0,Infection naive,BNT162b2,2 +47,151,50,Alpha,318.1820781,0,Infection naive,BNT162b2,2 +47,81,50,Delta,832.982871400002,0,Infection naive,BNT162b2,2 +47,151,50,Delta,405.618209199999,0,Infection naive,BNT162b2,2 +48,60,50,Ancestral,2560,1,Infection naive,BNT162b2,2 +48,102,50,Ancestral,571.919125600001,0,Infection naive,BNT162b2,2 +48,160,50,Ancestral,91.4117737899999,0,Infection naive,BNT162b2,2 +48,60,50,Alpha,397.1748113,0,Infection naive,BNT162b2,2 +48,102,50,Alpha,238.682470999999,0,Infection naive,BNT162b2,2 +48,160,50,Alpha,176.7077087,0,Infection naive,BNT162b2,2 +48,60,50,Delta,233.1002888,0,Infection naive,BNT162b2,2 +48,102,50,Delta,166.7754785,0,Infection naive,BNT162b2,2 +48,160,50,Delta,135.3742465,0,Infection naive,BNT162b2,2 +49,20,-24,Ancestral,2560,1,Infection naive,BNT162b2,2 +49,20,-24,Alpha,815.643398600001,0,Infection naive,BNT162b2,2 +49,20,-24,Delta,458.1720963,0,Infection naive,BNT162b2,2 +50,11,-10,Ancestral,110.464783536617,0,Previously infected (Pre-Omicron),BNT162b2,2 +50,32,-10,Ancestral,104.713777301928,0,Previously infected (Pre-Omicron),BNT162b2,2 +50,11,-10,Alpha,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +50,32,-10,Alpha,92.0550005127693,0,Previously infected (Pre-Omicron),BNT162b2,2 +50,11,-10,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +50,32,-10,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +51,69,60,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +51,111,60,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +51,193,60,Ancestral,331.854113199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,69,60,Alpha,1494.629897,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,111,60,Alpha,1527.74217,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,193,60,Alpha,274.615783899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,69,60,Delta,828.613748100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,111,60,Delta,922.938643800003,0,Previously infected (Pre-Omicron),BNT162b2,3 +51,193,60,Delta,200.6552951,0,Previously infected (Pre-Omicron),BNT162b2,3 +52,76,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +52,168,41,Ancestral,346.113625,0,Infection naive,BNT162b2,2 +52,238,41,Ancestral,306.950832311165,0,Infection naive,BNT162b2,2 +52,76,41,Alpha,859.6856735,0,Infection naive,BNT162b2,2 +52,168,41,Alpha,439.6811036,0,Infection naive,BNT162b2,2 +52,238,41,Alpha,359.72246663529,0,Infection naive,BNT162b2,2 +52,76,41,Delta,482.488919199999,0,Infection naive,BNT162b2,2 +52,168,41,Delta,249.375238500001,0,Infection naive,BNT162b2,2 +52,238,41,Delta,242.903429471149,0,Infection naive,BNT162b2,2 +53,95,53,Ancestral,600.165053300002,0,Infection naive,BNT162b2,2 +53,151,53,Ancestral,286.666961000001,0,Infection naive,BNT162b2,2 +53,251,53,Ancestral,128.8900265,0,Infection naive,BNT162b2,2 +53,95,53,Alpha,824.267541600003,0,Infection naive,BNT162b2,2 +53,151,53,Alpha,173.4849153,0,Infection naive,BNT162b2,2 +53,251,53,Alpha,107.503723789764,0,Infection naive,BNT162b2,2 +53,95,53,Delta,586.6426663,0,Infection naive,BNT162b2,2 +53,151,53,Delta,137.889066,0,Infection naive,BNT162b2,2 +53,251,53,Delta,58.15453771,0,Infection naive,BNT162b2,2 +54,87,44,Ancestral,1561.588019,0,Infection naive,BNT162b2,2 +54,87,44,Alpha,741.3252875,0,Infection naive,BNT162b2,2 +54,87,44,Delta,258.7264819,0,Infection naive,BNT162b2,2 +55,6,-24,Ancestral,148.68468983509,0,Infection naive,BNT162b2,1 +55,6,-24,Alpha,128.551558075558,0,Infection naive,BNT162b2,1 +55,6,-24,Delta,5,-1,Infection naive,BNT162b2,1 +56,62,44,Ancestral,2560,1,Infection naive,BNT162b2,2 +56,244,44,Ancestral,161.0296885,0,Infection naive,BNT162b2,2 +56,244,44,Ancestral,161.0296885,0,Infection naive,BNT162b2,2 +56,62,44,Alpha,916.489686199999,0,Infection naive,BNT162b2,2 +56,244,44,Alpha,204.5620457,0,Infection naive,BNT162b2,2 +56,244,44,Alpha,204.5620457,0,Infection naive,BNT162b2,2 +56,62,44,Delta,359.092430599999,0,Infection naive,BNT162b2,2 +56,244,44,Delta,86.3494333899999,0,Infection naive,BNT162b2,2 +56,244,44,Delta,86.3494333899999,0,Infection naive,BNT162b2,2 +57,31,31,Ancestral,1682.372782,0,Infection naive,BNT162b2,2 +57,54,31,Ancestral,1262.022346,0,Infection naive,BNT162b2,2 +57,31,31,Alpha,2169.2644141146,0,Infection naive,BNT162b2,2 +57,54,31,Alpha,977.047042700003,0,Infection naive,BNT162b2,2 +57,31,31,Delta,560.013987499999,0,Infection naive,BNT162b2,2 +57,54,31,Delta,1095.926476,0,Infection naive,BNT162b2,2 +58,41,41,Ancestral,112.615528487616,0,Infection naive,BNT162b2,2 +58,87,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +58,41,41,Alpha,89.5089351915363,0,Infection naive,BNT162b2,2 +58,87,41,Alpha,841.790351999999,0,Infection naive,BNT162b2,2 +58,41,41,Delta,40.5278261784787,0,Infection naive,BNT162b2,2 +58,87,41,Delta,513.018785499999,0,Infection naive,BNT162b2,2 +59,19,-17,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +59,40,-17,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +59,75,-17,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +59,19,-17,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +59,40,-17,Alpha,1339.527572,0,Previously infected (Pre-Omicron),BNT162b2,3 +59,75,-17,Alpha,1030.707638,0,Previously infected (Pre-Omicron),BNT162b2,3 +59,19,-17,Delta,1421.792665,0,Previously infected (Pre-Omicron),BNT162b2,3 +59,40,-17,Delta,496.6483465,0,Previously infected (Pre-Omicron),BNT162b2,3 +59,75,-17,Delta,497.955991299999,0,Previously infected (Pre-Omicron),BNT162b2,3 +60,25,7,Ancestral,498.392637599999,0,Infection naive,BNT162b2,2 +60,46,7,Ancestral,385.851371,0,Infection naive,BNT162b2,2 +60,88,7,Ancestral,188.548917900001,0,Infection naive,BNT162b2,2 +60,173,7,Ancestral,147.3871736,0,Infection naive,BNT162b2,2 +60,25,7,Alpha,130.481367,0,Infection naive,BNT162b2,2 +60,46,7,Alpha,147.1290323,0,Infection naive,BNT162b2,2 +60,88,7,Alpha,67.7357217499998,0,Infection naive,BNT162b2,2 +60,173,7,Alpha,73.9406678700002,0,Infection naive,BNT162b2,2 +60,25,7,Delta,259.1804235,0,Infection naive,BNT162b2,2 +60,46,7,Delta,197.6876195,0,Infection naive,BNT162b2,2 +60,88,7,Delta,113.4079572,0,Infection naive,BNT162b2,2 +60,173,7,Delta,59.0793103299999,0,Infection naive,BNT162b2,2 +61,84,58,Ancestral,1893.698356,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,168,58,Ancestral,119.2177506,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,307,58,Ancestral,100.664027719392,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,84,58,Alpha,562.966835099998,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,168,58,Alpha,132.2081837,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,307,58,Alpha,108.735670477585,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,84,58,Delta,327.2327092,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,168,58,Delta,112.8131151,0,Previously infected (Pre-Omicron),BNT162b2,3 +61,307,58,Delta,41.2084021348052,0,Previously infected (Pre-Omicron),BNT162b2,3 +62,76,46,Ancestral,2560,1,Infection naive,AZD1222,1 +62,76,46,Alpha,871.826742274675,0,Infection naive,AZD1222,1 +62,76,46,Delta,2560,1,Infection naive,AZD1222,1 +63,69,49,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +63,245,49,Ancestral,1589.203781,0,Previously infected (Pre-Omicron),BNT162b2,3 +63,69,49,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +63,245,49,Alpha,1542.54301454384,0,Previously infected (Pre-Omicron),BNT162b2,3 +63,69,49,Delta,905.312250299999,0,Previously infected (Pre-Omicron),BNT162b2,3 +63,245,49,Delta,864.218633100003,0,Previously infected (Pre-Omicron),BNT162b2,3 +64,67,27,Ancestral,2560,1,Infection naive,BNT162b2,2 +64,151,27,Ancestral,174.2468752,0,Infection naive,BNT162b2,2 +64,67,27,Alpha,1401.992765,0,Infection naive,BNT162b2,2 +64,151,27,Alpha,153.0480855,0,Infection naive,BNT162b2,2 +64,67,27,Delta,525.304331599999,0,Infection naive,BNT162b2,2 +64,151,27,Delta,102.2647856,0,Infection naive,BNT162b2,2 +65,70,34,Ancestral,1087.315338,0,Infection naive,BNT162b2,2 +65,154,34,Ancestral,477.8593931,0,Infection naive,BNT162b2,2 +65,70,34,Alpha,892.704861899999,0,Infection naive,BNT162b2,2 +65,154,34,Alpha,374.194229200001,0,Infection naive,BNT162b2,2 +65,70,34,Delta,853.678690799998,0,Infection naive,BNT162b2,2 +65,154,34,Delta,333.603917,0,Infection naive,BNT162b2,2 +66,80,54,Ancestral,809.234558300001,0,Infection naive,BNT162b2,2 +66,150,54,Ancestral,227.6486598,0,Infection naive,BNT162b2,2 +66,242,54,Ancestral,127.9894181,0,Infection naive,BNT162b2,2 +66,80,54,Alpha,705.198563800002,0,Infection naive,BNT162b2,2 +66,150,54,Alpha,233.3046891,0,Infection naive,BNT162b2,2 +66,242,54,Alpha,242.053307993616,0,Infection naive,BNT162b2,2 +66,80,54,Delta,429.7745987,0,Infection naive,BNT162b2,2 +66,150,54,Delta,67.8545656499999,0,Infection naive,BNT162b2,2 +66,242,54,Delta,43.0545027799999,0,Infection naive,BNT162b2,2 +67,0,-24,Ancestral,1025.301418,0,Infection naive,BNT162b2,2 +67,21,-24,Ancestral,892.704861899999,0,Infection naive,BNT162b2,2 +67,76,-24,Ancestral,296.375686400001,0,Infection naive,BNT162b2,2 +67,160,-24,Ancestral,56.4965538399999,0,Infection naive,BNT162b2,2 +67,0,-24,Alpha,238.8917662,0,Infection naive,BNT162b2,2 +67,21,-24,Alpha,219.8056519,0,Infection naive,BNT162b2,2 +67,76,-24,Alpha,118.3847264,0,Infection naive,BNT162b2,2 +67,160,-24,Alpha,72.7195032999999,0,Infection naive,BNT162b2,2 +67,0,-24,Delta,104.6220366,0,Infection naive,BNT162b2,2 +67,21,-24,Delta,88.8834988900001,0,Infection naive,BNT162b2,2 +67,76,-24,Delta,69.2970617100001,0,Infection naive,BNT162b2,2 +67,160,-24,Delta,48.7181830699999,0,Infection naive,BNT162b2,2 +68,46,42,Ancestral,129.796972124846,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,81,42,Ancestral,963.4406748,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,159,42,Ancestral,143.0597245,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,46,42,Alpha,50.8561208104012,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,81,42,Alpha,804.284739699998,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,159,42,Alpha,178.7327035,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,237,42,Alpha,171.068962431355,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,46,42,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +68,81,42,Delta,270.3172037,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,159,42,Delta,168.8345717,0,Previously infected (Pre-Omicron),BNT162b2,3 +68,237,42,Delta,221.9351403,0,Previously infected (Pre-Omicron),BNT162b2,3 +69,52,40,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +69,52,40,Alpha,1587.811465,0,Previously infected (Pre-Omicron),BNT162b2,3 +69,52,40,Delta,679.710320999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,96,58,Ancestral,331.854113199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,151,58,Ancestral,139.5915131,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,245,58,Ancestral,118.4885353,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,96,58,Alpha,399.9695656,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,151,58,Alpha,194.422716300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,245,58,Alpha,194.422716341038,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,96,58,Delta,175.0121818,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,151,58,Delta,95.0059933199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +70,245,58,Delta,47.95559391,0,Previously infected (Pre-Omicron),BNT162b2,3 +71,80,74,Ancestral,106.846159268181,0,Infection naive,AZD1222,1 +71,80,74,Alpha,5,-1,Infection naive,AZD1222,1 +71,80,74,Delta,5,-1,Infection naive,AZD1222,1 +72,0,-22,Ancestral,1353.690964,0,Infection naive,BNT162b2,2 +72,0,-22,Alpha,436.608868200001,0,Infection naive,BNT162b2,2 +72,0,-22,Delta,279.227353800001,0,Infection naive,BNT162b2,2 +73,5,-23,Ancestral,1007.484647,0,Previously infected (Pre-Omicron),BNT162b2,3 +73,5,-23,Alpha,414.604341,0,Previously infected (Pre-Omicron),BNT162b2,3 +73,28,-23,Alpha,321.546351899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +73,5,-23,Delta,220.9646454,0,Previously infected (Pre-Omicron),BNT162b2,3 +73,28,-23,Delta,205.2804932,0,Previously infected (Pre-Omicron),BNT162b2,3 +74,73,45,Ancestral,2560,1,Infection naive,BNT162b2,2 +74,73,45,Alpha,1019.02999,0,Infection naive,BNT162b2,2 +74,73,45,Delta,607.57499,0,Infection naive,BNT162b2,2 +75,133,93,Ancestral,204.3828271,0,Infection naive,AZD1222,2 +75,236,93,Ancestral,129.456122,0,Infection naive,AZD1222,2 +75,133,93,Alpha,138.7376782,0,Infection naive,AZD1222,2 +75,236,93,Alpha,74.5262507817008,0,Infection naive,AZD1222,2 +75,133,93,Delta,45.0622313999999,0,Infection naive,AZD1222,2 +75,236,93,Delta,5,-1,Infection naive,AZD1222,2 +76,133,83,Ancestral,93.8473077200001,0,Infection naive,AZD1222,1 +76,133,83,Alpha,47.4538443170817,0,Infection naive,AZD1222,1 +76,133,83,Delta,41.53475753,0,Infection naive,AZD1222,1 +77,49,37,Ancestral,2560,1,Infection naive,BNT162b2,2 +77,250,37,Ancestral,135.255643954031,0,Infection naive,BNT162b2,2 +77,49,37,Alpha,598.064575800001,0,Infection naive,BNT162b2,2 +77,250,37,Alpha,85.1469302348619,0,Infection naive,BNT162b2,2 +77,49,37,Delta,423.047306599999,0,Infection naive,BNT162b2,2 +77,250,37,Delta,51.1242754956066,0,Infection naive,BNT162b2,2 +78,42,28,Ancestral,565.4394316,0,Infection naive,BNT162b2,2 +78,68,28,Ancestral,552.6994515,0,Infection naive,BNT162b2,2 +78,108,28,Ancestral,232.4881616,0,Infection naive,BNT162b2,2 +78,42,28,Alpha,682.695664400001,0,Infection naive,BNT162b2,2 +78,68,28,Alpha,387.206529300001,0,Infection naive,BNT162b2,2 +78,108,28,Alpha,224.478422,0,Infection naive,BNT162b2,2 +78,42,28,Delta,416.0604833,0,Infection naive,BNT162b2,2 +78,68,28,Delta,426.397685799999,0,Infection naive,BNT162b2,2 +78,108,28,Delta,265.8527891,0,Infection naive,BNT162b2,2 +79,80,47,Ancestral,1710.624543,0,Infection naive,BNT162b2,2 +79,151,47,Ancestral,205.1006451,0,Infection naive,BNT162b2,2 +79,80,47,Alpha,1377.630189,0,Infection naive,BNT162b2,2 +79,151,47,Alpha,257.143938,0,Infection naive,BNT162b2,2 +79,80,47,Delta,940.908222600001,0,Infection naive,BNT162b2,2 +79,151,47,Delta,205.1006451,0,Infection naive,BNT162b2,2 +80,96,53,Ancestral,2560,1,Infection naive,BNT162b2,2 +80,150,53,Ancestral,131.5147314,0,Infection naive,BNT162b2,2 +80,236,53,Ancestral,204.3828271,0,Infection naive,BNT162b2,2 +80,96,53,Alpha,1305.908147,0,Infection naive,BNT162b2,2 +80,150,53,Alpha,445.499932,0,Infection naive,BNT162b2,2 +80,236,53,Alpha,177.328328281948,0,Infection naive,BNT162b2,2 +80,96,53,Delta,624.857349700001,0,Infection naive,BNT162b2,2 +80,150,53,Delta,130.7102996,0,Infection naive,BNT162b2,2 +80,236,53,Delta,99.0883265799999,0,Infection naive,BNT162b2,2 +81,117,91,Ancestral,144.6991278,0,Infection naive,AZD1222,2 +81,160,91,Ancestral,75.8442035,0,Infection naive,AZD1222,2 +81,298,91,Ancestral,148.5544258,0,Infection naive,AZD1222,2 +81,117,91,Alpha,202.7769085,0,Infection naive,AZD1222,2 +81,160,91,Alpha,96.2633217999998,0,Infection naive,AZD1222,2 +81,298,91,Alpha,106.006625751991,0,Infection naive,AZD1222,2 +81,117,91,Delta,53.2276564800001,0,Infection naive,AZD1222,2 +81,160,91,Delta,60.7065783099999,0,Infection naive,AZD1222,2 +81,298,91,Delta,42.6413908199999,0,Infection naive,AZD1222,2 +82,74,54,Ancestral,2560,1,Infection naive,BNT162b2,2 +82,242,54,Ancestral,119.0089466,0,Infection naive,BNT162b2,2 +82,74,54,Alpha,380.478000600002,0,Infection naive,BNT162b2,2 +82,242,54,Alpha,130.481366955718,0,Infection naive,BNT162b2,2 +82,74,54,Delta,209.2772962,0,Infection naive,BNT162b2,2 +82,242,54,Delta,63.3150925200002,0,Infection naive,BNT162b2,2 +83,76,54,Ancestral,2560,1,Infection naive,BNT162b2,2 +83,159,54,Ancestral,255.123454000001,0,Infection naive,BNT162b2,2 +83,76,54,Alpha,1277.603903,0,Infection naive,BNT162b2,2 +83,159,54,Alpha,321.264642300001,0,Infection naive,BNT162b2,2 +83,76,54,Delta,560.013987499999,0,Infection naive,BNT162b2,2 +83,159,54,Delta,173.9416905,0,Infection naive,BNT162b2,2 +84,81,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +84,150,41,Ancestral,583.054368300002,0,Infection naive,BNT162b2,2 +84,81,41,Alpha,1018.137209,0,Infection naive,BNT162b2,2 +84,150,41,Alpha,339.801208099999,0,Infection naive,BNT162b2,2 +84,81,41,Delta,587.1570799,0,Infection naive,BNT162b2,2 +84,150,41,Delta,264.690247899999,0,Infection naive,BNT162b2,2 +85,81,61,Ancestral,996.943540999999,0,Previously infected (Pre-Omicron),AZD1222,3 +85,159,61,Ancestral,400.6713215,0,Previously infected (Pre-Omicron),AZD1222,3 +85,81,61,Alpha,759.0782163,0,Previously infected (Pre-Omicron),AZD1222,3 +85,159,61,Alpha,392.674924599999,0,Previously infected (Pre-Omicron),AZD1222,3 +85,81,61,Delta,457.369630600001,0,Previously infected (Pre-Omicron),AZD1222,3 +85,159,61,Delta,294.562854899999,0,Previously infected (Pre-Omicron),AZD1222,3 +86,5,-21,Ancestral,541.194392500001,0,Infection naive,BNT162b2,2 +86,5,-21,Alpha,301.6169153,0,Infection naive,BNT162b2,2 +86,5,-21,Delta,193.7422693,0,Infection naive,BNT162b2,2 +87,80,58,Ancestral,1113.353883,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,150,58,Ancestral,213.5390003,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,80,58,Alpha,643.1948116,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,150,58,Alpha,463.828917200002,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,244,58,Alpha,364.802713224805,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,80,58,Delta,272.219313700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,150,58,Delta,241.2061618,0,Previously infected (Pre-Omicron),BNT162b2,3 +87,244,58,Delta,333.019626300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,46,42,Ancestral,1124.14011170073,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,46,42,Alpha,767.776927952915,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,46,42,Delta,695.377960810212,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,96,42,Delta,503.662354,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,151,42,Delta,527.149266099999,0,Previously infected (Pre-Omicron),BNT162b2,3 +88,243,42,Delta,283.6676231,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,68,53,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +89,109,53,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +89,193,53,Ancestral,284.4145027,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,252,53,Ancestral,399.269038768964,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,271,53,Ancestral,506.318070100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,68,53,Alpha,1651.689684,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,109,53,Alpha,1240.092051,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,193,53,Alpha,421.9363738,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,252,53,Alpha,447.848968718045,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,68,53,Delta,848.457022200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,109,53,Delta,633.1268378,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,193,53,Delta,217.505870200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,252,53,Delta,326.659577338246,0,Previously infected (Pre-Omicron),BNT162b2,3 +89,271,53,Delta,559.033150799998,0,Previously infected (Pre-Omicron),BNT162b2,3 +90,80,42,Ancestral,2052.72683499999,0,Infection naive,BNT162b2,2 +90,160,42,Ancestral,220.7710563,0,Infection naive,BNT162b2,2 +90,80,42,Alpha,649.995582700002,0,Infection naive,BNT162b2,2 +90,160,42,Alpha,315.958807000001,0,Infection naive,BNT162b2,2 +90,80,42,Delta,350.694162500001,0,Infection naive,BNT162b2,2 +90,160,42,Delta,178.419662,0,Infection naive,BNT162b2,2 +91,133,85,Ancestral,126.317704098264,0,Infection naive,AZD1222,1 +91,133,85,Alpha,144.572355573196,0,Infection naive,AZD1222,1 +91,133,85,Delta,5,-1,Infection naive,AZD1222,1 +92,81,49,Ancestral,1644.46705,0,Previously infected (Pre-Omicron),BNT162b2,3 +92,150,49,Ancestral,117.0434584,0,Previously infected (Pre-Omicron),BNT162b2,3 +92,81,49,Alpha,574.934746699999,0,Previously infected (Pre-Omicron),BNT162b2,3 +92,150,49,Alpha,98.3097495,0,Previously infected (Pre-Omicron),BNT162b2,3 +92,81,49,Delta,241.2061618,0,Previously infected (Pre-Omicron),BNT162b2,3 +92,150,49,Delta,76.7806138099998,0,Previously infected (Pre-Omicron),BNT162b2,3 +93,48,35,Ancestral,2560,1,Infection naive,BNT162b2,2 +93,231,35,Ancestral,218.6527375,0,Infection naive,BNT162b2,2 +93,48,35,Alpha,837.375032099998,0,Infection naive,BNT162b2,2 +93,231,35,Alpha,224.675262,0,Infection naive,BNT162b2,2 +93,48,35,Delta,359.407310600001,0,Infection naive,BNT162b2,2 +93,231,35,Delta,219.4206732,0,Infection naive,BNT162b2,2 +94,3,-18,Ancestral,1494.629897,0,Infection naive,BNT162b2,2 +94,24,-18,Ancestral,1207.909069,0,Infection naive,BNT162b2,2 +94,67,-18,Ancestral,641.505766099999,0,Infection naive,BNT162b2,2 +94,3,-18,Alpha,685.694119700002,0,Infection naive,BNT162b2,2 +94,24,-18,Alpha,473.6892911,0,Infection naive,BNT162b2,2 +94,67,-18,Alpha,447.456604200001,0,Infection naive,BNT162b2,2 +94,3,-18,Delta,1103.638055,0,Infection naive,BNT162b2,2 +94,24,-18,Delta,1045.263996,0,Infection naive,BNT162b2,2 +94,67,-18,Delta,190.8768368,0,Infection naive,BNT162b2,2 +95,20,-9,Ancestral,146.485655279567,0,Infection naive,BNT162b2,1 +95,20,-9,Alpha,164.597166448315,0,Infection naive,BNT162b2,1 +95,20,-9,Delta,110.174700267007,0,Infection naive,BNT162b2,1 +96,68,34,Ancestral,732.926266099998,0,Infection naive,BNT162b2,2 +96,152,34,Ancestral,381.8142869,0,Infection naive,BNT162b2,2 +96,68,34,Alpha,1120.205809,0,Infection naive,BNT162b2,2 +96,152,34,Alpha,172.272703700001,0,Infection naive,BNT162b2,2 +96,68,34,Delta,651.706981500002,0,Infection naive,BNT162b2,2 +96,152,34,Delta,180.1482008,0,Infection naive,BNT162b2,2 +97,76,51,Ancestral,2435.337141,0,Previously infected (Pre-Omicron),BNT162b2,3 +97,76,51,Alpha,2152.219626,0,Previously infected (Pre-Omicron),BNT162b2,3 +97,76,51,Delta,406.329875899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +98,76,52,Ancestral,290.2062941,0,Infection naive,BNT162b2,2 +98,159,52,Ancestral,82.3576725299998,0,Infection naive,BNT162b2,2 +98,76,52,Alpha,245.471750300001,0,Infection naive,BNT162b2,2 +98,159,52,Alpha,171.669778,0,Infection naive,BNT162b2,2 +98,76,52,Delta,96.4322180399998,0,Infection naive,BNT162b2,2 +98,159,52,Delta,53.7904550299999,0,Infection naive,BNT162b2,2 +99,52,40,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +99,235,40,Ancestral,134.310556301701,0,Previously infected (Pre-Omicron),BNT162b2,3 +99,52,40,Alpha,700.271046999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +99,235,40,Alpha,87.9535289881869,0,Previously infected (Pre-Omicron),BNT162b2,3 +99,52,40,Delta,399.269038800001,0,Previously infected (Pre-Omicron),BNT162b2,3 +99,235,40,Delta,54.9339671726918,0,Previously infected (Pre-Omicron),BNT162b2,3 +100,38,38,Ancestral,95.1726835550794,0,Infection naive,BNT162b2,2 +100,74,38,Ancestral,2560,1,Infection naive,BNT162b2,2 +100,158,38,Ancestral,117.5575229,0,Infection naive,BNT162b2,2 +100,38,38,Alpha,5,-1,Infection naive,BNT162b2,2 +100,74,38,Alpha,201.8901902,0,Infection naive,BNT162b2,2 +100,158,38,Alpha,133.606076800001,0,Infection naive,BNT162b2,2 +100,38,38,Delta,5,-1,Infection naive,BNT162b2,2 +100,74,38,Delta,79.45059724,0,Infection naive,BNT162b2,2 +100,158,38,Delta,57.3446769799999,0,Infection naive,BNT162b2,2 +101,84,49,Ancestral,934.333704000001,0,Previously infected (Pre-Omicron),AZD1222,2 +101,84,49,Alpha,532.723038468038,0,Previously infected (Pre-Omicron),AZD1222,2 +101,84,49,Delta,649.995582700002,0,Previously infected (Pre-Omicron),AZD1222,2 +102,116,75,Ancestral,121.645490188642,0,Infection naive,"",1 +102,116,75,Alpha,122.608877763544,0,Infection naive,"",1 +102,116,75,Delta,154.260170083228,0,Infection naive,"",1 +103,69,28,Ancestral,182.8525756,0,Infection naive,BNT162b2,2 +103,69,28,Alpha,199.777854400001,0,Infection naive,BNT162b2,2 +103,69,28,Delta,120.583935,0,Infection naive,BNT162b2,2 +104,117,83,Ancestral,91.65245542,0,Infection naive,AZD1222,2 +104,151,83,Ancestral,5,-1,Infection naive,AZD1222,2 +104,117,83,Alpha,5,-1,Infection naive,AZD1222,2 +104,117,83,Delta,5,-1,Infection naive,AZD1222,2 +104,151,83,Delta,5,-1,Infection naive,AZD1222,2 +105,21,-21,Ancestral,266.319234099999,0,Infection naive,BNT162b2,2 +105,21,-21,Alpha,227.6486598,0,Infection naive,BNT162b2,2 +105,21,-21,Delta,155.4818539,0,Infection naive,BNT162b2,2 +106,76,26,Ancestral,380.478000600002,0,Infection naive,BNT162b2,2 +106,76,26,Alpha,304.538995399999,0,Infection naive,BNT162b2,2 +106,76,26,Delta,180.7809038,0,Infection naive,BNT162b2,2 +107,68,62,Ancestral,761.076822999998,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,153,62,Ancestral,452.187752400001,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,248,62,Ancestral,246.549882300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,68,62,Alpha,1171.41634518555,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,153,62,Alpha,367.369678499999,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,248,62,Alpha,349.160620479432,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,68,62,Delta,786.8526775,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,153,62,Delta,488.445967700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +107,248,62,Delta,214.288976000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +108,102,83,Ancestral,124.449475455526,0,Infection naive,AZD1222,1 +108,102,83,Alpha,5,-1,Infection naive,AZD1222,1 +108,102,83,Delta,5,-1,Infection naive,AZD1222,1 +109,77,40,Ancestral,458.573856899999,0,Infection naive,BNT162b2,2 +109,77,40,Alpha,350.3869162,0,Infection naive,BNT162b2,2 +109,77,40,Delta,148.164318200001,0,Infection naive,BNT162b2,2 +110,40,30,Ancestral,517.988937699999,0,Infection naive,BNT162b2,2 +110,61,30,Ancestral,2560,1,Infection naive,BNT162b2,2 +110,40,30,Alpha,544.525071300002,0,Infection naive,BNT162b2,2 +110,61,30,Alpha,201.3600216,0,Infection naive,BNT162b2,2 +110,40,30,Delta,214.288976000001,0,Infection naive,BNT162b2,2 +110,61,30,Delta,125.5450607,0,Infection naive,BNT162b2,2 +111,80,72,Ancestral,1211.089419,0,Infection naive,BNT162b2,2 +111,159,72,Ancestral,81.2107586800002,0,Infection naive,BNT162b2,2 +111,80,72,Alpha,527.149266099999,0,Infection naive,BNT162b2,2 +111,159,72,Alpha,209.6444781,0,Infection naive,BNT162b2,2 +111,80,72,Delta,254.676618,0,Infection naive,BNT162b2,2 +111,159,72,Delta,116.8384626,0,Infection naive,BNT162b2,2 +112,126,93,Ancestral,766.4322048,0,Infection naive,AZD1222,2 +112,150,93,Ancestral,73.6818878699998,0,Infection naive,AZD1222,2 +112,126,93,Alpha,45.6185921499999,0,Infection naive,AZD1222,2 +112,150,93,Alpha,40.1389579100002,0,Infection naive,AZD1222,2 +112,126,93,Delta,41.1001878499999,0,Infection naive,AZD1222,2 +112,150,93,Delta,5,-1,Infection naive,AZD1222,2 +113,52,28,Ancestral,2560,1,Infection naive,BNT162b2,2 +113,52,28,Alpha,378.8142175,0,Infection naive,BNT162b2,2 +113,52,28,Delta,142.8091625,0,Infection naive,BNT162b2,2 +114,61,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +114,103,41,Ancestral,374.194229200001,0,Infection naive,BNT162b2,2 +114,180,41,Ancestral,131.7454771,0,Infection naive,BNT162b2,2 +114,61,41,Alpha,361.936310700001,0,Infection naive,BNT162b2,2 +114,103,41,Alpha,368.0142372,0,Infection naive,BNT162b2,2 +114,180,41,Alpha,119.8463632,0,Infection naive,BNT162b2,2 +114,61,41,Delta,301.3526661,0,Infection naive,BNT162b2,2 +114,103,41,Delta,186.7397735,0,Infection naive,BNT162b2,2 +114,180,41,Delta,76.7133456300002,0,Infection naive,BNT162b2,2 +115,48,38,Ancestral,2560,1,Infection naive,BNT162b2,2 +115,48,38,Alpha,2256.534692,0,Infection naive,BNT162b2,2 +115,48,38,Delta,1176.561302,0,Infection naive,BNT162b2,2 +116,32,29,Ancestral,5,-1,Infection naive,AZD1222,1 +116,32,29,Alpha,5,-1,Infection naive,AZD1222,1 +116,81,29,Alpha,5,-1,Infection naive,AZD1222,1 +116,32,29,Delta,5,-1,Infection naive,AZD1222,1 +116,81,29,Delta,5,-1,Infection naive,AZD1222,1 +117,80,47,Ancestral,2036.59773000001,0,Infection naive,BNT162b2,2 +117,151,47,Ancestral,298.9848162,0,Infection naive,BNT162b2,2 +117,325,47,Ancestral,395.438015100001,0,Infection naive,BNT162b2,2 +117,80,47,Alpha,1022.608951,0,Infection naive,BNT162b2,2 +117,151,47,Alpha,910.0857901,0,Infection naive,BNT162b2,2 +117,325,47,Alpha,324.092880833301,0,Infection naive,BNT162b2,2 +117,80,47,Delta,538.8278166,0,Infection naive,BNT162b2,2 +117,151,47,Delta,446.672906199999,0,Infection naive,BNT162b2,2 +117,325,47,Delta,266.085909400001,0,Infection naive,BNT162b2,2 +118,133,97,Ancestral,145.589651248851,0,Previously infected (Pre-Omicron),mRNA1273,2 +118,133,97,Alpha,149.20688905334,0,Previously infected (Pre-Omicron),mRNA1273,2 +118,133,97,Delta,69.6624519845714,0,Previously infected (Pre-Omicron),mRNA1273,2 +119,4,-17,Ancestral,493.6105138,0,Infection naive,BNT162b2,2 +119,25,-17,Ancestral,367.369678499999,0,Infection naive,BNT162b2,2 +119,67,-17,Ancestral,184.9479879,0,Infection naive,BNT162b2,2 +119,4,-17,Alpha,238.0556849,0,Infection naive,BNT162b2,2 +119,25,-17,Alpha,118.2810085,0,Infection naive,BNT162b2,2 +119,67,-17,Alpha,114.7075639,0,Infection naive,BNT162b2,2 +119,4,-17,Delta,169.5761069,0,Infection naive,BNT162b2,2 +119,25,-17,Delta,138.9810967,0,Infection naive,BNT162b2,2 +119,67,-17,Delta,93.60086235,0,Infection naive,BNT162b2,2 +120,84,43,Ancestral,1041.605746,0,Infection naive,BNT162b2,2 +120,150,43,Ancestral,661.490370600001,0,Infection naive,BNT162b2,2 +120,84,43,Alpha,665.561388300001,0,Infection naive,BNT162b2,2 +120,150,43,Alpha,385.5133232,0,Infection naive,BNT162b2,2 +120,84,43,Delta,1132.050219,0,Infection naive,BNT162b2,2 +120,150,43,Delta,390.615284299999,0,Infection naive,BNT162b2,2 +121,10,-17,Ancestral,114.707563909016,0,Infection naive,BNT162b2,1 +121,31,-17,Ancestral,116.327542543632,0,Infection naive,BNT162b2,1 +121,10,-17,Alpha,59.3387915012427,0,Infection naive,BNT162b2,1 +121,31,-17,Alpha,5,-1,Infection naive,BNT162b2,1 +121,10,-17,Delta,5,-1,Infection naive,BNT162b2,1 +121,31,-17,Delta,5,-1,Infection naive,BNT162b2,1 +122,81,41,Ancestral,1847.789234,0,Infection naive,BNT162b2,2 +122,150,41,Ancestral,199.953035,0,Infection naive,BNT162b2,2 +122,244,41,Ancestral,163.0178413,0,Infection naive,BNT162b2,2 +122,81,41,Alpha,927.805124399998,0,Infection naive,BNT162b2,2 +122,150,41,Alpha,350.694162500001,0,Infection naive,BNT162b2,2 +122,244,41,Alpha,200.831245125291,0,Infection naive,BNT162b2,2 +122,81,41,Delta,775.21519,0,Infection naive,BNT162b2,2 +122,150,41,Delta,193.912157500001,0,Infection naive,BNT162b2,2 +122,244,41,Delta,95.7584058700001,0,Infection naive,BNT162b2,2 +123,119,73,Ancestral,185.1101646,0,Infection naive,AZD1222,2 +123,159,73,Ancestral,157.5395321,0,Infection naive,AZD1222,2 +123,119,73,Alpha,87.4921992100002,0,Infection naive,AZD1222,2 +123,159,73,Alpha,74.8535761800001,0,Infection naive,AZD1222,2 +123,119,73,Delta,70.2141530000002,0,Infection naive,AZD1222,2 +123,159,73,Delta,79.93956094,0,Infection naive,AZD1222,2 +124,124,81,Ancestral,141.3149794,0,Infection naive,AZD1222,1 +124,124,81,Alpha,56.1509832100001,0,Infection naive,AZD1222,1 +124,124,81,Delta,5,-1,Infection naive,AZD1222,1 +125,68,42,Ancestral,2560,1,Infection naive,BNT162b2,2 +125,152,42,Ancestral,115.1104312,0,Infection naive,BNT162b2,2 +125,68,42,Alpha,809.234558300001,0,Infection naive,BNT162b2,2 +125,152,42,Alpha,159.6244421,0,Infection naive,BNT162b2,2 +125,68,42,Delta,377.15771,0,Infection naive,BNT162b2,2 +125,152,42,Delta,116.6338259,0,Infection naive,BNT162b2,2 +126,131,90,Ancestral,186.739773455233,0,Infection naive,AZD1222,1 +126,131,90,Alpha,114.105905100308,0,Infection naive,AZD1222,1 +126,131,90,Delta,5,-1,Infection naive,AZD1222,1 +127,76,50,Ancestral,674.369561900001,0,Infection naive,BNT162b2,2 +127,159,50,Ancestral,99.7855700200003,0,Infection naive,BNT162b2,2 +127,76,50,Alpha,357.2089356,0,Infection naive,BNT162b2,2 +127,159,50,Alpha,204.741421500001,0,Infection naive,BNT162b2,2 +127,76,50,Delta,256.0194795,0,Infection naive,BNT162b2,2 +127,159,50,Delta,84.2560552900003,0,Infection naive,BNT162b2,2 +128,76,41,Ancestral,416.060483272753,0,Infection naive,BNT162b2,2 +128,159,41,Ancestral,243.116426,0,Infection naive,BNT162b2,2 +128,243,41,Ancestral,177.328328299999,0,Infection naive,BNT162b2,2 +128,76,41,Alpha,457.770687576985,0,Infection naive,BNT162b2,2 +128,159,41,Alpha,366.404956600001,0,Infection naive,BNT162b2,2 +128,243,41,Alpha,227.050848726935,0,Infection naive,BNT162b2,2 +128,76,41,Delta,306.950832311165,0,Infection naive,BNT162b2,2 +128,159,41,Delta,262.3803941,0,Infection naive,BNT162b2,2 +128,243,41,Delta,255.7951785,0,Infection naive,BNT162b2,2 +129,39,26,Ancestral,494.4765649,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,88,26,Ancestral,278.982720200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,172,26,Ancestral,143.8140513,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,39,26,Alpha,843.267292800003,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,88,26,Alpha,168.2436788,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,172,26,Alpha,155.8912282,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,39,26,Delta,282.6748337,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,88,26,Delta,155.0735547,0,Previously infected (Pre-Omicron),BNT162b2,3 +129,172,26,Delta,163.733829,0,Previously infected (Pre-Omicron),BNT162b2,3 +130,14,-16,Ancestral,166.483379566172,0,Infection naive,BNT162b2,1 +130,14,-16,Alpha,168.096279036151,0,Infection naive,BNT162b2,1 +130,14,-16,Delta,191.044212302065,0,Infection naive,BNT162b2,1 +131,47,28,Ancestral,2560,1,Infection naive,BNT162b2,2 +131,89,28,Ancestral,890.360596700001,0,Infection naive,BNT162b2,2 +131,173,28,Ancestral,418.621048999999,0,Infection naive,BNT162b2,2 +131,47,28,Alpha,1469.945388,0,Infection naive,BNT162b2,2 +131,89,28,Alpha,563.954573599998,0,Infection naive,BNT162b2,2 +131,47,28,Delta,996.943540999999,0,Infection naive,BNT162b2,2 +131,89,28,Delta,365.1226004,0,Infection naive,BNT162b2,2 +131,173,28,Delta,445.499932,0,Infection naive,BNT162b2,2 +132,133,84,Ancestral,1880.466295,0,Infection naive,AZD1222,2 +132,150,84,Ancestral,290.2062941,0,Infection naive,AZD1222,2 +132,236,84,Ancestral,570.91743762185,0,Infection naive,AZD1222,2 +132,325,84,Ancestral,780.670057600001,0,Infection naive,AZD1222,2 +132,133,84,Alpha,308.028882,0,Infection naive,AZD1222,2 +132,150,84,Alpha,510.327923100001,0,Infection naive,AZD1222,2 +132,236,84,Alpha,625.405272831979,0,Infection naive,AZD1222,2 +132,325,84,Alpha,473.274287620173,0,Infection naive,AZD1222,2 +132,133,84,Delta,328.958145200001,0,Infection naive,AZD1222,2 +132,150,84,Delta,274.134808000001,0,Infection naive,AZD1222,2 +132,236,84,Delta,435.080810005539,0,Infection naive,AZD1222,2 +132,325,84,Delta,745.887634099998,0,Infection naive,AZD1222,2 +133,76,51,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +133,159,51,Ancestral,332.1451085,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,298,51,Ancestral,352.543306400001,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,76,51,Alpha,1791.964782,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,159,51,Alpha,528.537218,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,298,51,Alpha,315.12909135797,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,76,51,Delta,1244.447409,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,159,51,Delta,293.531934100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +133,298,51,Delta,177.639455,0,Previously infected (Pre-Omicron),BNT162b2,3 +134,4,-26,Ancestral,136.9255775,0,Previously infected (Pre-Omicron),BNT162b2,2 +134,4,-26,Alpha,101.461249822687,0,Previously infected (Pre-Omicron),BNT162b2,2 +134,27,-26,Alpha,125.325174773812,0,Previously infected (Pre-Omicron),BNT162b2,2 +134,4,-26,Delta,47.1222645000002,0,Previously infected (Pre-Omicron),BNT162b2,2 +134,27,-26,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +135,133,89,Ancestral,2065.35995499999,0,Previously infected (Pre-Omicron),AZD1222,3 +135,160,89,Ancestral,2560,1,Previously infected (Pre-Omicron),AZD1222,3 +135,234,89,Ancestral,1593.388057,0,Previously infected (Pre-Omicron),AZD1222,3 +135,133,89,Alpha,881.044935599999,0,Previously infected (Pre-Omicron),AZD1222,3 +135,160,89,Alpha,815.643398595694,0,Previously infected (Pre-Omicron),AZD1222,3 +135,234,89,Alpha,447.848968718045,0,Previously infected (Pre-Omicron),AZD1222,3 +135,133,89,Delta,1216.408623,0,Previously infected (Pre-Omicron),AZD1222,3 +135,160,89,Delta,854.427262200003,0,Previously infected (Pre-Omicron),AZD1222,3 +135,234,89,Delta,1009.252303,0,Previously infected (Pre-Omicron),AZD1222,3 +136,73,27,Ancestral,2560,1,Infection naive,BNT162b2,2 +136,157,27,Ancestral,196.650717500001,0,Infection naive,BNT162b2,2 +136,248,27,Ancestral,168.096279036151,0,Infection naive,BNT162b2,2 +136,73,27,Alpha,454.5720527,0,Infection naive,BNT162b2,2 +136,157,27,Alpha,166.0461901,0,Infection naive,BNT162b2,2 +136,248,27,Alpha,327.519652092377,0,Infection naive,BNT162b2,2 +136,73,27,Delta,180.9394264,0,Infection naive,BNT162b2,2 +136,157,27,Delta,111.8286368,0,Infection naive,BNT162b2,2 +136,248,27,Delta,148.164318226981,0,Infection naive,BNT162b2,2 +137,133,83,Ancestral,255.347166000001,0,Infection naive,AZD1222,2 +137,160,83,Ancestral,150.1251547,0,Infection naive,AZD1222,2 +137,231,83,Ancestral,156.4387377,0,Infection naive,AZD1222,2 +137,133,83,Alpha,162.7323236,0,Infection naive,AZD1222,2 +137,160,83,Alpha,94.8395950400003,0,Infection naive,AZD1222,2 +137,231,83,Alpha,5,-1,Infection naive,AZD1222,2 +137,133,83,Delta,65.74692666,0,Infection naive,AZD1222,2 +137,160,83,Delta,43.3574594500001,0,Infection naive,AZD1222,2 +137,231,83,Delta,5,-1,Infection naive,AZD1222,2 +138,41,41,Ancestral,101.639265952646,0,Infection naive,BNT162b2,2 +138,76,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +138,160,41,Ancestral,130.0247039,0,Infection naive,BNT162b2,2 +138,41,41,Alpha,5,-1,Infection naive,BNT162b2,2 +138,76,41,Alpha,741.975338799998,0,Infection naive,BNT162b2,2 +138,160,41,Alpha,177.951127500001,0,Infection naive,BNT162b2,2 +138,41,41,Delta,5,-1,Infection naive,BNT162b2,2 +138,76,41,Delta,468.733176700001,0,Infection naive,BNT162b2,2 +138,160,41,Delta,139.469215700001,0,Infection naive,BNT162b2,2 +139,69,31,Ancestral,2560,1,Infection naive,BNT162b2,2 +139,69,31,Alpha,1264.236594,0,Infection naive,BNT162b2,2 +139,69,31,Delta,707.055308599998,0,Infection naive,BNT162b2,2 +140,89,42,Ancestral,1079.717811,0,Infection naive,BNT162b2,2 +140,172,42,Ancestral,97.7940997500001,0,Infection naive,BNT162b2,2 +140,89,42,Alpha,482.912002799999,0,Infection naive,BNT162b2,2 +140,172,42,Alpha,181.2568889,0,Infection naive,BNT162b2,2 +140,243,42,Alpha,110.078175224005,0,Infection naive,BNT162b2,2 +140,89,42,Delta,238.4733591,0,Infection naive,BNT162b2,2 +140,172,42,Delta,75.8442035,0,Infection naive,BNT162b2,2 +140,243,42,Delta,70.5843789200002,0,Infection naive,BNT162b2,2 +141,6,-16,Ancestral,1038.870464,0,Infection naive,BNT162b2,3 +141,27,-16,Ancestral,2560,1,Infection naive,BNT162b2,3 +141,70,-16,Ancestral,348.8547177,0,Infection naive,BNT162b2,3 +141,6,-16,Alpha,452.981126300002,0,Infection naive,BNT162b2,3 +141,27,-16,Alpha,442.387037999999,0,Infection naive,BNT162b2,3 +141,70,-16,Alpha,408.4723763,0,Infection naive,BNT162b2,3 +141,6,-16,Delta,249.375238500001,0,Infection naive,BNT162b2,3 +141,27,-16,Delta,185.5975484,0,Infection naive,BNT162b2,3 +141,70,-16,Delta,97.6228182400002,0,Infection naive,BNT162b2,3 +142,84,70,Ancestral,429.7745987,0,Previously infected (Pre-Omicron),AZD1222,4 +142,160,70,Ancestral,129.9107881,0,Previously infected (Pre-Omicron),AZD1222,4 +142,84,70,Alpha,485.8839935,0,Previously infected (Pre-Omicron),AZD1222,4 +142,160,70,Alpha,286.164878000001,0,Previously infected (Pre-Omicron),AZD1222,4 +142,264,70,Alpha,254.899938100001,0,Previously infected (Pre-Omicron),AZD1222,4 +142,84,70,Delta,183.9779073,0,Previously infected (Pre-Omicron),AZD1222,4 +142,160,70,Delta,123.579895,0,Previously infected (Pre-Omicron),AZD1222,4 +142,264,70,Delta,144.4456944,0,Previously infected (Pre-Omicron),AZD1222,4 +143,19,-18,Ancestral,731.001583499999,0,Infection naive,BNT162b2,2 +143,40,-18,Ancestral,285.4134019,0,Infection naive,BNT162b2,2 +143,87,-18,Ancestral,222.9098976,0,Infection naive,BNT162b2,2 +143,171,-18,Ancestral,138.6161289,0,Infection naive,BNT162b2,2 +143,19,-18,Alpha,179.2032958,0,Infection naive,BNT162b2,2 +143,40,-18,Alpha,178.2633469,0,Infection naive,BNT162b2,2 +143,87,-18,Alpha,237.4305447,0,Infection naive,BNT162b2,2 +143,171,-18,Alpha,110.5616476,0,Infection naive,BNT162b2,2 +143,19,-18,Delta,320.140269600001,0,Infection naive,BNT162b2,2 +143,40,-18,Delta,167.9490084,0,Infection naive,BNT162b2,2 +143,87,-18,Delta,149.468676,0,Infection naive,BNT162b2,2 +143,171,-18,Delta,61.9971178600002,0,Infection naive,BNT162b2,2 +144,126,96,Ancestral,265.6198731,0,Infection naive,AZD1222,2 +144,126,96,Alpha,85.22159364,0,Infection naive,AZD1222,2 +144,126,96,Delta,160.3255257,0,Infection naive,AZD1222,2 +145,81,74,Ancestral,184.3007008,0,Infection naive,AZD1222,2 +145,160,74,Ancestral,56.3481924800002,0,Infection naive,AZD1222,2 +145,81,74,Alpha,145.9729799,0,Infection naive,AZD1222,2 +145,160,74,Alpha,96.1789846400002,0,Infection naive,AZD1222,2 +145,81,74,Delta,68.93358797,0,Infection naive,AZD1222,2 +145,160,74,Delta,125.8756132,0,Infection naive,AZD1222,2 +146,124,89,Ancestral,2560,1,Previously infected (Pre-Omicron),AZD1222,3 +146,168,89,Ancestral,264.2266561,0,Previously infected (Pre-Omicron),AZD1222,3 +146,234,89,Ancestral,231.674491839836,0,Previously infected (Pre-Omicron),AZD1222,3 +146,124,89,Alpha,492.745979499999,0,Previously infected (Pre-Omicron),AZD1222,3 +146,168,89,Alpha,245.2566903,0,Previously infected (Pre-Omicron),AZD1222,3 +146,124,89,Delta,342.192248199999,0,Previously infected (Pre-Omicron),AZD1222,3 +146,168,89,Delta,201.3600216,0,Previously infected (Pre-Omicron),AZD1222,3 +146,234,89,Delta,278.738300902528,0,Previously infected (Pre-Omicron),AZD1222,3 +147,41,41,Ancestral,141.4388953,0,Infection naive,BNT162b2,2 +147,80,41,Ancestral,479.537695000001,0,Infection naive,BNT162b2,2 +147,150,41,Ancestral,284.4145027,0,Infection naive,BNT162b2,2 +147,245,41,Ancestral,166.337522,0,Infection naive,BNT162b2,2 +147,41,41,Alpha,5,-1,Infection naive,BNT162b2,2 +147,80,41,Alpha,619.404450899999,0,Infection naive,BNT162b2,2 +147,150,41,Alpha,138.859334100001,0,Infection naive,BNT162b2,2 +147,245,41,Alpha,131.630053697801,0,Infection naive,BNT162b2,2 +147,41,41,Delta,5,-1,Infection naive,BNT162b2,2 +147,80,41,Delta,291.480903899999,0,Infection naive,BNT162b2,2 +147,150,41,Delta,193.4029393,0,Infection naive,BNT162b2,2 +147,245,41,Delta,58.40995721,0,Infection naive,BNT162b2,2 +148,117,90,Ancestral,289.9520417,0,Infection naive,AZD1222,2 +148,159,90,Ancestral,373.8663943,0,Infection naive,AZD1222,2 +148,117,90,Alpha,54.4068706399999,0,Infection naive,AZD1222,2 +148,159,90,Alpha,98.9147783000003,0,Infection naive,AZD1222,2 +148,117,90,Delta,72.2113817700003,0,Infection naive,AZD1222,2 +148,159,90,Delta,99.7855700200003,0,Infection naive,AZD1222,2 +149,14,-23,Ancestral,220.191306000001,0,Infection naive,BNT162b2,2 +149,14,-23,Alpha,164.021103800001,0,Infection naive,BNT162b2,2 +149,39,-23,Alpha,202.954718900001,0,Infection naive,BNT162b2,2 +149,74,-23,Alpha,116.6338259,0,Infection naive,BNT162b2,2 +149,158,-23,Alpha,48.8036602599998,0,Infection naive,BNT162b2,2 +149,14,-23,Delta,90.2178130599998,0,Infection naive,BNT162b2,2 +149,39,-23,Delta,94.2594927799998,0,Infection naive,BNT162b2,2 +149,74,-23,Delta,70.64627275,0,Infection naive,BNT162b2,2 +149,158,-23,Delta,41.5711784200001,0,Infection naive,BNT162b2,2 +150,42,26,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +150,62,26,Ancestral,1273.13250237821,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,104,26,Ancestral,1333.669984,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,188,26,Ancestral,607.57499,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,42,26,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +150,62,26,Alpha,1143.01757944835,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,104,26,Alpha,1211.089419,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,188,26,Alpha,440.838757200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,42,26,Delta,877.961425299999,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,62,26,Delta,950.856843638419,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,104,26,Delta,1060.025929,0,Previously infected (Pre-Omicron),BNT162b2,3 +150,188,26,Delta,525.764959,0,Previously infected (Pre-Omicron),BNT162b2,3 +151,76,39,Ancestral,1182.765086,0,Infection naive,BNT162b2,2 +151,76,39,Alpha,1210.028373,0,Infection naive,BNT162b2,2 +151,76,39,Delta,782.725514299998,0,Infection naive,BNT162b2,2 +152,41,34,Ancestral,777.937842600003,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,80,34,Ancestral,422.306360200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,160,34,Ancestral,161.0296885,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,41,34,Alpha,398.9192356,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,80,34,Alpha,560.996545100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,160,34,Alpha,262.8407466,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,41,34,Delta,243.756536699999,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,80,34,Delta,172.4237657,0,Previously infected (Pre-Omicron),BNT162b2,3 +152,160,34,Delta,127.9894181,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,81,52,Ancestral,739.378548899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,159,52,Ancestral,253.1188458,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,252,52,Ancestral,439.6811036,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,81,52,Alpha,598.589004999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,159,52,Alpha,420.091298400001,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,252,52,Alpha,409.906982324407,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,81,52,Delta,565.935252499999,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,159,52,Delta,288.1785015,0,Previously infected (Pre-Omicron),BNT162b2,3 +153,252,52,Delta,142.6840461,0,Previously infected (Pre-Omicron),BNT162b2,3 +154,68,27,Ancestral,160.888609,0,Infection naive,BNT162b2,2 +154,68,27,Alpha,321.8283086,0,Infection naive,BNT162b2,2 +154,68,27,Delta,170.6197311,0,Infection naive,BNT162b2,2 +155,70,52,Ancestral,1181.728855,0,Infection naive,BNT162b2,2 +155,238,52,Ancestral,279.227353800001,0,Infection naive,BNT162b2,2 +155,70,52,Alpha,1078.771861,0,Infection naive,BNT162b2,2 +155,238,52,Alpha,354.712967615556,0,Infection naive,BNT162b2,2 +155,70,52,Delta,1343.054466,0,Infection naive,BNT162b2,2 +155,238,52,Delta,266.552763300001,0,Infection naive,BNT162b2,2 +156,14,-3,Ancestral,185.9231836,0,Previously infected (Pre-Omicron),others,3 +156,76,-3,Ancestral,306.681909900001,0,Previously infected (Pre-Omicron),others,3 +156,150,-3,Ancestral,90.3761023199997,0,Previously infected (Pre-Omicron),others,3 +156,318,-3,Ancestral,139.469215684706,0,Previously infected (Pre-Omicron),others,3 +156,14,-3,Alpha,218.4611738,0,Previously infected (Pre-Omicron),others,3 +156,76,-3,Alpha,128.7771048,0,Previously infected (Pre-Omicron),others,3 +156,150,-3,Alpha,119.9514538,0,Previously infected (Pre-Omicron),others,3 +156,318,-3,Alpha,112.418287978578,0,Previously infected (Pre-Omicron),others,3 +156,14,-3,Delta,60.8130894199999,0,Previously infected (Pre-Omicron),others,3 +156,76,-3,Delta,91.4117737899999,0,Previously infected (Pre-Omicron),others,3 +156,150,-3,Delta,50.58937264,0,Previously infected (Pre-Omicron),others,3 +156,318,-3,Delta,97.1107715442805,0,Previously infected (Pre-Omicron),others,3 +157,33,28,Ancestral,154.260170083228,0,Infection naive,BNT162b2,2 +157,75,28,Ancestral,617.7778794,0,Infection naive,BNT162b2,2 +157,145,28,Ancestral,109.9817347,0,Infection naive,BNT162b2,2 +157,33,28,Alpha,125.105673950083,0,Infection naive,BNT162b2,2 +157,75,28,Alpha,161.1708918,0,Infection naive,BNT162b2,2 +157,145,28,Alpha,92.7840422799997,0,Infection naive,BNT162b2,2 +157,33,28,Delta,57.394961222384,0,Infection naive,BNT162b2,2 +157,75,28,Delta,102.4442116,0,Infection naive,BNT162b2,2 +157,145,28,Delta,46.6292338600001,0,Infection naive,BNT162b2,2 +158,76,56,Ancestral,140.943882757322,0,Infection naive,AZD1222,1 +158,76,56,Alpha,50.6781328723178,0,Infection naive,AZD1222,1 +158,76,56,Delta,5,-1,Infection naive,AZD1222,1 +159,35,32,Ancestral,97.9656817769744,0,Infection naive,BNT162b2,2 +159,35,32,Alpha,57.1439801799681,0,Infection naive,BNT162b2,2 +159,35,32,Delta,5,-1,Infection naive,BNT162b2,2 +160,33,26,Ancestral,1448.205014,0,Previously infected (Pre-Omicron),BNT162b2,3 +160,75,26,Ancestral,633.6820123,0,Previously infected (Pre-Omicron),BNT162b2,3 +160,33,26,Alpha,911.682556900002,0,Previously infected (Pre-Omicron),BNT162b2,3 +160,75,26,Alpha,362.5713364,0,Previously infected (Pre-Omicron),BNT162b2,3 +160,33,26,Delta,227.050848700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +160,75,26,Delta,184.6240607,0,Previously infected (Pre-Omicron),BNT162b2,3 +161,117,70,Ancestral,499.704875025919,0,Previously infected (Pre-Omicron),AZD1222,2 +161,117,70,Alpha,769.798437800932,0,Previously infected (Pre-Omicron),AZD1222,2 +161,117,70,Delta,359.407310556111,0,Previously infected (Pre-Omicron),AZD1222,2 +162,80,59,Ancestral,1862.423045,0,Infection naive,BNT162b2,2 +162,150,59,Ancestral,228.2480448,0,Infection naive,BNT162b2,2 +162,80,59,Alpha,1116.285275,0,Infection naive,BNT162b2,2 +162,150,59,Alpha,352.543306400001,0,Infection naive,BNT162b2,2 +162,243,59,Alpha,225.464349655178,0,Infection naive,BNT162b2,2 +162,80,59,Delta,513.018785499999,0,Infection naive,BNT162b2,2 +162,150,59,Delta,190.8768368,0,Infection naive,BNT162b2,2 +162,243,59,Delta,282.6748337,0,Infection naive,BNT162b2,2 +163,14,-10,Ancestral,104.530376317928,0,Infection naive,BNT162b2,1 +163,14,-10,Alpha,46.1818220151127,0,Infection naive,BNT162b2,1 +163,14,-10,Delta,5,-1,Infection naive,BNT162b2,1 +164,84,54,Ancestral,355.335319799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +164,150,54,Ancestral,70.64627275,0,Previously infected (Pre-Omicron),BNT162b2,3 +164,84,54,Alpha,316.513164100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +164,150,54,Alpha,154.5308232,0,Previously infected (Pre-Omicron),BNT162b2,3 +164,84,54,Delta,174.094216,0,Previously infected (Pre-Omicron),BNT162b2,3 +164,150,54,Delta,89.8233017599999,0,Previously infected (Pre-Omicron),BNT162b2,3 +165,95,53,Ancestral,168.2436788,0,Infection naive,BNT162b2,2 +165,95,53,Alpha,79.3114434600003,0,Infection naive,BNT162b2,2 +165,95,53,Delta,165.0305408,0,Infection naive,BNT162b2,2 +166,67,41,Ancestral,2376.29701499999,0,Infection naive,BNT162b2,2 +166,154,41,Ancestral,1585.030492,0,Infection naive,BNT162b2,2 +166,67,41,Alpha,1757.741623,0,Infection naive,BNT162b2,2 +166,154,41,Alpha,878.731289700001,0,Infection naive,BNT162b2,2 +166,67,41,Delta,1449.47491200001,0,Infection naive,BNT162b2,2 +166,154,41,Delta,1034.327612,0,Infection naive,BNT162b2,2 +167,116,88,Ancestral,322.110512499999,0,Infection naive,BNT162b2,3 +167,150,88,Ancestral,542.619324400001,0,Infection naive,BNT162b2,3 +167,234,88,Ancestral,192.726061299999,0,Infection naive,BNT162b2,3 +167,116,88,Alpha,360.669594000001,0,Infection naive,BNT162b2,3 +167,150,88,Alpha,433.558099799999,0,Infection naive,BNT162b2,3 +167,234,88,Alpha,175.934987838245,0,Infection naive,BNT162b2,3 +167,116,88,Delta,305.608574399999,0,Infection naive,BNT162b2,3 +167,150,88,Delta,277.276275700001,0,Infection naive,BNT162b2,3 +167,234,88,Delta,107.8812903,0,Infection naive,BNT162b2,3 +168,76,54,Ancestral,1478.991889,0,Infection naive,BNT162b2,2 +168,150,54,Ancestral,199.602827200001,0,Infection naive,BNT162b2,2 +168,76,54,Alpha,611.850243099998,0,Infection naive,BNT162b2,2 +168,150,54,Alpha,321.546351899999,0,Infection naive,BNT162b2,2 +168,76,54,Delta,343.695184599999,0,Infection naive,BNT162b2,2 +168,150,54,Delta,201.3600216,0,Infection naive,BNT162b2,2 +169,3,-8,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +169,27,-8,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +169,68,-8,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +169,3,-8,Alpha,2250.608976,0,Previously infected (Pre-Omicron),BNT162b2,3 +169,27,-8,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +169,68,-8,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +169,3,-8,Delta,1299.058458,0,Previously infected (Pre-Omicron),BNT162b2,3 +169,27,-8,Delta,997.817738100004,0,Previously infected (Pre-Omicron),BNT162b2,3 +169,68,-8,Delta,849.2010148,0,Previously infected (Pre-Omicron),BNT162b2,3 +170,117,91,Ancestral,2482.75305900001,0,Previously infected (Pre-Omicron),AZD1222,3 +170,160,91,Ancestral,301.6169153,0,Previously infected (Pre-Omicron),AZD1222,3 +170,307,91,Ancestral,353.7814825,0,Previously infected (Pre-Omicron),AZD1222,3 +170,117,91,Alpha,460.991830000001,0,Previously infected (Pre-Omicron),AZD1222,3 +170,160,91,Alpha,322.9586098,0,Previously infected (Pre-Omicron),AZD1222,3 +170,307,91,Alpha,161.31221889536,0,Previously infected (Pre-Omicron),AZD1222,3 +170,117,91,Delta,220.191306000001,0,Previously infected (Pre-Omicron),AZD1222,3 +170,160,91,Delta,255.5710741,0,Previously infected (Pre-Omicron),AZD1222,3 +170,307,91,Delta,183.0129149,0,Previously infected (Pre-Omicron),AZD1222,3 +171,76,49,Ancestral,659.753280500002,0,Infection naive,BNT162b2,2 +171,150,49,Ancestral,118.0738452,0,Infection naive,BNT162b2,2 +171,76,49,Alpha,350.694162500001,0,Infection naive,BNT162b2,2 +171,150,49,Alpha,171.2189689,0,Infection naive,BNT162b2,2 +171,76,49,Delta,192.3885111,0,Infection naive,BNT162b2,2 +171,150,49,Delta,82.7919289299998,0,Infection naive,BNT162b2,2 +172,32,27,Ancestral,161.453669903554,0,Infection naive,BNT162b2,2 +172,75,27,Ancestral,1194.223775,0,Infection naive,BNT162b2,2 +172,230,27,Ancestral,267.7234849,0,Infection naive,BNT162b2,2 +172,32,27,Alpha,182.372400207781,0,Infection naive,BNT162b2,2 +172,75,27,Alpha,648.857147700003,0,Infection naive,BNT162b2,2 +172,230,27,Alpha,133.606076800001,0,Infection naive,BNT162b2,2 +172,32,27,Delta,96.2633217966529,0,Infection naive,BNT162b2,2 +172,75,27,Delta,211.861138,0,Infection naive,BNT162b2,2 +172,230,27,Delta,164.741498,0,Infection naive,BNT162b2,2 +173,27,27,Ancestral,106.7525503898,0,Infection naive,BNT162b2,2 +173,67,27,Ancestral,2560,1,Infection naive,BNT162b2,2 +173,154,27,Ancestral,155.3456349,0,Infection naive,BNT162b2,2 +173,27,27,Alpha,5,-1,Infection naive,BNT162b2,2 +173,67,27,Alpha,983.922117299998,0,Infection naive,BNT162b2,2 +173,154,27,Alpha,167.06809,0,Infection naive,BNT162b2,2 +173,27,27,Delta,5,-1,Infection naive,BNT162b2,2 +173,67,27,Delta,307.759015099999,0,Infection naive,BNT162b2,2 +173,154,27,Delta,107.5037238,0,Infection naive,BNT162b2,2 +174,52,26,Ancestral,431.2840209,0,Infection naive,BNT162b2,2 +174,52,26,Alpha,200.4794992,0,Infection naive,BNT162b2,2 +174,52,26,Delta,84.2560552900003,0,Infection naive,BNT162b2,2 +175,0,-24,Ancestral,108.8310183,0,Infection naive,BNT162b2,2 +175,21,-24,Ancestral,118.6964262,0,Infection naive,BNT162b2,2 +175,67,-24,Ancestral,92.7840422799997,0,Infection naive,BNT162b2,2 +175,158,-24,Ancestral,56.1509832100001,0,Infection naive,BNT162b2,2 +175,0,-24,Alpha,88.6500886099999,0,Infection naive,BNT162b2,2 +175,21,-24,Alpha,50.2799342700001,0,Infection naive,BNT162b2,2 +175,67,-24,Alpha,46.4253300100001,0,Infection naive,BNT162b2,2 +175,158,-24,Alpha,5,-1,Infection naive,BNT162b2,2 +175,0,-24,Delta,44.47365804,0,Infection naive,BNT162b2,2 +175,21,-24,Delta,5,-1,Infection naive,BNT162b2,2 +175,67,-24,Delta,5,-1,Infection naive,BNT162b2,2 +175,158,-24,Delta,5,-1,Infection naive,BNT162b2,2 +176,76,76,Ancestral,198.034467000762,0,Infection naive,AZD1222,2 +176,76,76,Alpha,171.970976643965,0,Infection naive,AZD1222,2 +176,76,76,Delta,126.317704098264,0,Infection naive,AZD1222,2 +177,73,37,Ancestral,2560,1,Infection naive,BNT162b2,2 +177,150,37,Ancestral,181.5749083,0,Infection naive,BNT162b2,2 +177,73,37,Alpha,450.605170699999,0,Infection naive,BNT162b2,2 +177,150,37,Alpha,199.2532328,0,Infection naive,BNT162b2,2 +177,73,37,Delta,254.4534935,0,Infection naive,BNT162b2,2 +177,150,37,Delta,194.9346195,0,Infection naive,BNT162b2,2 +178,53,39,Ancestral,1632.97647200001,0,Infection naive,BNT162b2,2 +178,252,39,Ancestral,655.143308864813,0,Infection naive,BNT162b2,2 +178,53,39,Alpha,1040.693186,0,Infection naive,BNT162b2,2 +178,252,39,Alpha,905.312250251336,0,Infection naive,BNT162b2,2 +178,53,39,Delta,258.0470597,0,Infection naive,BNT162b2,2 +179,124,78,Ancestral,1002.200235,0,Previously infected (Pre-Omicron),AZD1222,4 +179,159,78,Ancestral,248.7203729,0,Previously infected (Pre-Omicron),AZD1222,4 +179,124,78,Alpha,509.434109100002,0,Previously infected (Pre-Omicron),AZD1222,4 +179,159,78,Alpha,206.3628983,0,Previously infected (Pre-Omicron),AZD1222,4 +179,124,78,Delta,181.4158289,0,Previously infected (Pre-Omicron),AZD1222,4 +179,159,78,Delta,161.1708918,0,Previously infected (Pre-Omicron),AZD1222,4 +180,80,59,Ancestral,2560,1,Infection naive,BNT162b2,2 +180,160,59,Ancestral,437.374908599999,0,Infection naive,BNT162b2,2 +180,80,59,Alpha,2122.24779199999,0,Infection naive,BNT162b2,2 +180,160,59,Alpha,744.581248899999,0,Infection naive,BNT162b2,2 +180,80,59,Delta,1028.902405,0,Infection naive,BNT162b2,2 +180,160,59,Delta,191.7151835,0,Infection naive,BNT162b2,2 +181,76,58,Ancestral,2205.69245200001,0,Infection naive,BNT162b2,2 +181,159,58,Ancestral,197.6876195,0,Infection naive,BNT162b2,2 +181,76,58,Alpha,1715.128513,0,Infection naive,BNT162b2,2 +181,159,58,Alpha,273.175381900001,0,Infection naive,BNT162b2,2 +181,76,58,Delta,771.825270199999,0,Infection naive,BNT162b2,2 +181,159,58,Delta,176.5528935,0,Infection naive,BNT162b2,2 +182,84,52,Ancestral,1099.775506,0,Infection naive,BNT162b2,2 +182,159,52,Ancestral,293.7893255,0,Infection naive,BNT162b2,2 +182,307,52,Ancestral,322.9586098,0,Infection naive,BNT162b2,2 +182,84,52,Alpha,1143.017579,0,Infection naive,BNT162b2,2 +182,159,52,Alpha,213.1649974,0,Infection naive,BNT162b2,2 +182,84,52,Delta,642.0682879,0,Infection naive,BNT162b2,2 +182,159,52,Delta,247.199033100001,0,Infection naive,BNT162b2,2 +182,307,52,Delta,160.6068206,0,Infection naive,BNT162b2,2 +183,80,43,Ancestral,808.5255807,0,Infection naive,BNT162b2,2 +183,160,43,Ancestral,262.3803941,0,Infection naive,BNT162b2,2 +183,80,43,Alpha,529.464548799999,0,Infection naive,BNT162b2,2 +183,160,43,Alpha,319.0198321,0,Infection naive,BNT162b2,2 +183,80,43,Delta,245.471750300001,0,Infection naive,BNT162b2,2 +183,160,43,Delta,148.164318200001,0,Infection naive,BNT162b2,2 +184,52,43,Ancestral,2560,1,Infection naive,BNT162b2,2 +184,236,43,Ancestral,296.375686400001,0,Infection naive,BNT162b2,2 +184,52,43,Alpha,1016.353992,0,Infection naive,BNT162b2,2 +184,236,43,Alpha,171.820311329011,0,Infection naive,BNT162b2,2 +184,52,43,Delta,505.8744803,0,Infection naive,BNT162b2,2 +184,236,43,Delta,130.1387196,0,Infection naive,BNT162b2,2 +185,76,59,Ancestral,2027.691941,0,Infection naive,BNT162b2,2 +185,150,59,Ancestral,176.089261200001,0,Infection naive,BNT162b2,2 +185,307,59,Ancestral,328.094293000001,0,Infection naive,BNT162b2,2 +185,76,59,Alpha,1184.840275,0,Infection naive,BNT162b2,2 +185,150,59,Alpha,436.608868200001,0,Infection naive,BNT162b2,2 +185,307,59,Alpha,193.912157451256,0,Infection naive,BNT162b2,2 +185,76,59,Delta,651.1360152,0,Infection naive,BNT162b2,2 +185,150,59,Delta,288.431198699999,0,Infection naive,BNT162b2,2 +185,307,59,Delta,245.2566903,0,Infection naive,BNT162b2,2 +186,80,59,Ancestral,513.918889000001,0,Infection naive,BNT162b2,2 +186,160,59,Ancestral,114.406339,0,Infection naive,BNT162b2,2 +186,80,59,Alpha,467.5022717,0,Infection naive,BNT162b2,2 +186,160,59,Alpha,155.2095352,0,Infection naive,BNT162b2,2 +186,80,59,Delta,148.0345101,0,Infection naive,BNT162b2,2 +186,160,59,Delta,80.9265345799999,0,Infection naive,BNT162b2,2 +186,509,59,Delta,116.8384626,0,Infection naive,BNT162b2,2 +186,509,59,Delta,116.8384626,0,Infection naive,BNT162b2,2 +187,26,-19,Ancestral,203.1326853,0,Infection naive,BNT162b2,2 +187,68,-19,Ancestral,82.5745152699999,0,Infection naive,BNT162b2,2 +187,110,-19,Ancestral,5,-1,Infection naive,BNT162b2,2 +187,26,-19,Alpha,46.3846563599999,0,Infection naive,BNT162b2,2 +187,68,-19,Alpha,5,-1,Infection naive,BNT162b2,2 +187,26,-19,Delta,5,-1,Infection naive,BNT162b2,2 +187,68,-19,Delta,5,-1,Infection naive,BNT162b2,2 +187,110,-19,Delta,5,-1,Infection naive,BNT162b2,2 +188,84,69,Ancestral,519.352771,0,Previously infected (Pre-Omicron),AZD1222,3 +188,151,69,Ancestral,151.0490716,0,Previously infected (Pre-Omicron),AZD1222,3 +188,252,69,Ancestral,124.8865576,0,Previously infected (Pre-Omicron),AZD1222,3 +188,84,69,Alpha,233.509268699999,0,Previously infected (Pre-Omicron),AZD1222,3 +188,151,69,Alpha,99.0883265799999,0,Previously infected (Pre-Omicron),AZD1222,3 +188,252,69,Alpha,89.5089351915363,0,Previously infected (Pre-Omicron),AZD1222,3 +188,84,69,Delta,166.337522,0,Previously infected (Pre-Omicron),AZD1222,3 +188,151,69,Delta,90.2969230099998,0,Previously infected (Pre-Omicron),AZD1222,3 +188,252,69,Delta,68.69233191,0,Previously infected (Pre-Omicron),AZD1222,3 +189,73,39,Ancestral,2560,1,Infection naive,BNT162b2,2 +189,73,39,Alpha,620.491210500002,0,Infection naive,BNT162b2,2 +189,73,39,Delta,358.463498,0,Infection naive,BNT162b2,2 +190,5,-19,Ancestral,682.097548600003,0,Infection naive,BNT162b2,2 +190,26,-19,Ancestral,364.483106299999,0,Infection naive,BNT162b2,2 +190,5,-19,Alpha,472.031457600001,0,Infection naive,BNT162b2,2 +190,26,-19,Alpha,1016.353992,0,Infection naive,BNT162b2,2 +190,68,-19,Alpha,1026.200481,0,Infection naive,BNT162b2,2 +190,153,-19,Alpha,179.675127100001,0,Infection naive,BNT162b2,2 +190,5,-19,Delta,361.302397200001,0,Infection naive,BNT162b2,2 +190,26,-19,Delta,423.047306599999,0,Infection naive,BNT162b2,2 +190,68,-19,Delta,404.1986132,0,Infection naive,BNT162b2,2 +190,153,-19,Delta,115.1104312,0,Infection naive,BNT162b2,2 +191,76,55,Ancestral,363.844732199999,0,Infection naive,BNT162b2,2 +191,76,55,Alpha,504.988466300001,0,Infection naive,BNT162b2,2 +191,76,55,Delta,349.160620500001,0,Infection naive,BNT162b2,2 +192,81,50,Ancestral,832.982871400002,0,Previously infected (Pre-Omicron),BNT162b2,3 +192,151,50,Ancestral,172.1217741,0,Previously infected (Pre-Omicron),BNT162b2,3 +192,81,50,Alpha,765.7607266,0,Previously infected (Pre-Omicron),BNT162b2,3 +192,151,50,Alpha,336.2459375,0,Previously infected (Pre-Omicron),BNT162b2,3 +192,81,50,Delta,591.8071482,0,Previously infected (Pre-Omicron),BNT162b2,3 +192,151,50,Delta,115.8188566,0,Previously infected (Pre-Omicron),BNT162b2,3 +193,73,32,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +193,161,32,Ancestral,526.687425899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +193,73,32,Alpha,1170.390057,0,Previously infected (Pre-Omicron),BNT162b2,3 +193,161,32,Alpha,560.013987499999,0,Previously infected (Pre-Omicron),BNT162b2,3 +193,73,32,Delta,524.384287100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +193,161,32,Delta,506.318070100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +194,20,-19,Ancestral,670.8323899,0,Infection naive,BNT162b2,2 +194,42,-19,Ancestral,660.331803100001,0,Infection naive,BNT162b2,2 +194,89,-19,Ancestral,290.2062941,0,Infection naive,BNT162b2,2 +194,173,-19,Ancestral,156.164743,0,Infection naive,BNT162b2,2 +194,20,-19,Alpha,169.8736322,0,Infection naive,BNT162b2,2 +194,42,-19,Alpha,133.9578534,0,Infection naive,BNT162b2,2 +194,89,-19,Alpha,97.87985316,0,Infection naive,BNT162b2,2 +194,173,-19,Alpha,80.7847957700002,0,Infection naive,BNT162b2,2 +194,20,-19,Delta,190.042156000001,0,Infection naive,BNT162b2,2 +194,42,-19,Delta,193.4029393,0,Infection naive,BNT162b2,2 +194,89,-19,Delta,149.0761676,0,Infection naive,BNT162b2,2 +194,173,-19,Delta,80.50206246,0,Infection naive,BNT162b2,2 +195,5,-33,Ancestral,500.14305484178,0,Infection naive,BNT162b2,1 +195,5,-33,Alpha,988.243583847195,0,Infection naive,BNT162b2,1 +195,5,-33,Delta,249.156758622271,0,Infection naive,BNT162b2,1 +196,26,6,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +196,68,6,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +196,153,6,Ancestral,990.845569000003,0,Previously infected (Pre-Omicron),BNT162b2,3 +196,26,6,Alpha,1403.222141,0,Previously infected (Pre-Omicron),BNT162b2,3 +196,68,6,Alpha,2154.106858,0,Previously infected (Pre-Omicron),BNT162b2,3 +196,153,6,Alpha,1020.817902,0,Previously infected (Pre-Omicron),BNT162b2,3 +196,26,6,Delta,463.4225525,0,Previously infected (Pre-Omicron),BNT162b2,3 +197,84,49,Ancestral,430.151458299999,0,Infection naive,BNT162b2,2 +197,151,49,Ancestral,344.600113099999,0,Infection naive,BNT162b2,2 +197,84,49,Alpha,455.369609900001,0,Infection naive,BNT162b2,2 +197,151,49,Alpha,269.607344,0,Infection naive,BNT162b2,2 +197,84,49,Delta,274.375190600001,0,Infection naive,BNT162b2,2 +197,151,49,Delta,143.5621682,0,Infection naive,BNT162b2,2 +198,81,55,Ancestral,438.526490099999,0,Infection naive,BNT162b2,2 +198,159,55,Ancestral,220.191306000001,0,Infection naive,BNT162b2,2 +198,277,55,Ancestral,167.507970100001,0,Infection naive,BNT162b2,2 +198,81,55,Alpha,745.887634099998,0,Infection naive,BNT162b2,2 +198,159,55,Alpha,160.888609,0,Infection naive,BNT162b2,2 +198,277,55,Alpha,124.8865576,0,Infection naive,BNT162b2,2 +198,81,55,Delta,235.771518399999,0,Infection naive,BNT162b2,2 +198,159,55,Delta,136.5660075,0,Infection naive,BNT162b2,2 +198,277,55,Delta,51.3488175,0,Infection naive,BNT162b2,2 +199,46,33,Ancestral,2560,1,Infection naive,BNT162b2,2 +199,68,33,Ancestral,977.047042700003,0,Infection naive,BNT162b2,2 +199,110,33,Ancestral,1212.151396,0,Infection naive,BNT162b2,2 +199,194,33,Ancestral,5,-1,Infection naive,BNT162b2,2 +199,46,33,Alpha,432.7987443,0,Infection naive,BNT162b2,2 +199,68,33,Alpha,505.8744803,0,Infection naive,BNT162b2,2 +199,110,33,Alpha,241.41767,0,Infection naive,BNT162b2,2 +199,194,33,Alpha,76.3109723399998,0,Infection naive,BNT162b2,2 +199,46,33,Delta,263.763876200001,0,Infection naive,BNT162b2,2 +199,68,33,Delta,255.347166000001,0,Infection naive,BNT162b2,2 +199,110,33,Delta,106.4722155,0,Infection naive,BNT162b2,2 +199,194,33,Delta,40.7058277100001,0,Infection naive,BNT162b2,2 +200,76,44,Ancestral,1625.835669,0,Previously infected (Pre-Omicron),BNT162b2,4 +200,76,44,Alpha,647.720706600002,0,Previously infected (Pre-Omicron),BNT162b2,4 +200,76,44,Delta,217.3153114,0,Previously infected (Pre-Omicron),BNT162b2,4 +201,80,51,Ancestral,1212.151396,0,Previously infected (Pre-Omicron),BNT162b2,3 +201,151,51,Ancestral,738.083564100002,0,Previously infected (Pre-Omicron),BNT162b2,3 +201,80,51,Alpha,678.519842099999,0,Previously infected (Pre-Omicron),BNT162b2,3 +201,151,51,Alpha,550.282565399999,0,Previously infected (Pre-Omicron),BNT162b2,3 +201,80,51,Delta,1399.537244,0,Previously infected (Pre-Omicron),BNT162b2,3 +201,151,51,Delta,940.083884500002,0,Previously infected (Pre-Omicron),BNT162b2,3 +202,24,-24,Ancestral,177.328328281948,0,Infection naive,BNT162b2,2 +202,24,-24,Alpha,176.862659680467,0,Infection naive,BNT162b2,2 +202,45,-24,Alpha,93.1099114400002,0,Infection naive,BNT162b2,2 +202,87,-24,Alpha,132.7888529,0,Infection naive,BNT162b2,2 +202,171,-24,Alpha,63.2596215999999,0,Infection naive,BNT162b2,2 +202,24,-24,Delta,119.636458255127,0,Infection naive,BNT162b2,2 +202,45,-24,Delta,50.9900218800002,0,Infection naive,BNT162b2,2 +202,87,-24,Delta,69.9071152200002,0,Infection naive,BNT162b2,2 +202,171,-24,Delta,52.2111082799999,0,Infection naive,BNT162b2,2 +203,80,45,Ancestral,702.730486399999,0,Infection naive,BNT162b2,2 +203,151,45,Ancestral,278.494095800001,0,Infection naive,BNT162b2,2 +203,80,45,Alpha,844.746824900003,0,Infection naive,BNT162b2,2 +203,151,45,Alpha,304.538995399999,0,Infection naive,BNT162b2,2 +203,80,45,Delta,581.523253000001,0,Infection naive,BNT162b2,2 +203,151,45,Delta,158.5090795,0,Infection naive,BNT162b2,2 +204,28,27,Ancestral,139.8364296,0,Infection naive,BNT162b2,2 +204,70,27,Ancestral,267.0204364,0,Infection naive,BNT162b2,2 +204,154,27,Ancestral,268.428384500001,0,Infection naive,BNT162b2,2 +204,28,27,Alpha,5,-1,Infection naive,BNT162b2,2 +204,70,27,Alpha,511.2233054,0,Infection naive,BNT162b2,2 +204,154,27,Alpha,89.4305156099998,0,Infection naive,BNT162b2,2 +204,28,27,Delta,5,-1,Infection naive,BNT162b2,2 +204,70,27,Delta,324.0928808,0,Infection naive,BNT162b2,2 +204,154,27,Delta,186.2493902,0,Infection naive,BNT162b2,2 +205,81,60,Ancestral,753.113831499999,0,Infection naive,BNT162b2,2 +205,150,60,Ancestral,309.653059899999,0,Infection naive,BNT162b2,2 +205,81,60,Alpha,1009.252303,0,Infection naive,BNT162b2,2 +205,150,60,Alpha,280.4537432,0,Infection naive,BNT162b2,2 +205,81,60,Delta,455.768913199999,0,Infection naive,BNT162b2,2 +205,150,60,Delta,255.123454000001,0,Infection naive,BNT162b2,2 +206,4,-19,Ancestral,699.657533199999,0,Infection naive,BNT162b2,2 +206,24,-19,Ancestral,838.109307200003,0,Infection naive,BNT162b2,2 +206,368,-19,Ancestral,868.775494099999,0,Infection naive,BNT162b2,2 +206,559,-19,Ancestral,557.076628047233,0,Infection naive,BNT162b2,2 +206,4,-19,Alpha,545.958772599999,0,Infection naive,BNT162b2,2 +206,24,-19,Alpha,210.5652539,0,Infection naive,BNT162b2,2 +206,4,-19,Delta,162.8750199,0,Infection naive,BNT162b2,2 +206,24,-19,Delta,57.69759397,0,Infection naive,BNT162b2,2 +207,81,49,Ancestral,337.4268752,0,Infection naive,BNT162b2,2 +207,150,49,Ancestral,157.2636095,0,Infection naive,BNT162b2,2 +207,81,49,Alpha,531.324094499999,0,Infection naive,BNT162b2,2 +207,150,49,Alpha,135.1371453,0,Infection naive,BNT162b2,2 +207,81,49,Delta,315.958807000001,0,Infection naive,BNT162b2,2 +207,150,49,Delta,79.93956094,0,Infection naive,BNT162b2,2 +208,55,30,Ancestral,2560,1,Infection naive,BNT162b2,2 +208,237,30,Ancestral,160.606820581806,0,Infection naive,BNT162b2,2 +208,55,30,Alpha,1255.402845,0,Infection naive,BNT162b2,2 +208,237,30,Alpha,151.712491519182,0,Infection naive,BNT162b2,2 +208,55,30,Delta,388.226020499999,0,Infection naive,BNT162b2,2 +208,237,30,Delta,105.358218481155,0,Infection naive,BNT162b2,2 +209,0,-18,Ancestral,927.805124399998,0,Infection naive,BNT162b2,2 +209,21,-18,Ancestral,569.418194200001,0,Infection naive,BNT162b2,2 +209,67,-18,Ancestral,978.7612945,0,Infection naive,BNT162b2,2 +209,0,-18,Alpha,219.4206732,0,Infection naive,BNT162b2,2 +209,21,-18,Alpha,276.5481413,0,Infection naive,BNT162b2,2 +209,67,-18,Alpha,143.0597245,0,Infection naive,BNT162b2,2 +209,0,-18,Delta,213.726247800001,0,Infection naive,BNT162b2,2 +209,21,-18,Delta,192.3885111,0,Infection naive,BNT162b2,2 +209,67,-18,Delta,109.3090131,0,Infection naive,BNT162b2,2 +210,131,92,Ancestral,72.3380783200001,0,Infection naive,AZD1222,2 +210,131,92,Alpha,5,-1,Infection naive,AZD1222,2 +210,131,92,Delta,5,-1,Infection naive,AZD1222,2 +211,28,27,Ancestral,99.9606461299999,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,70,27,Ancestral,595.971449500002,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,154,27,Ancestral,290.2062941,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,28,27,Alpha,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +211,70,27,Alpha,559.523354199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,154,27,Alpha,172.272703700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,28,27,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +211,70,27,Delta,371.254033700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +211,154,27,Delta,123.9052733,0,Previously infected (Pre-Omicron),BNT162b2,3 +212,117,96,Ancestral,465.050150400001,0,Infection naive,AZD1222,2 +212,150,96,Ancestral,67.5578460500001,0,Infection naive,AZD1222,2 +212,117,96,Alpha,149.7309223,0,Infection naive,AZD1222,2 +212,150,96,Alpha,74.9192135799999,0,Infection naive,AZD1222,2 +212,117,96,Delta,46.8751009699999,0,Infection naive,AZD1222,2 +212,150,96,Delta,51.3938441100001,0,Infection naive,AZD1222,2 +213,62,38,Ancestral,2560,1,Infection naive,BNT162b2,2 +213,147,38,Ancestral,102.6239523,0,Infection naive,BNT162b2,2 +213,62,38,Alpha,469.55558,0,Infection naive,BNT162b2,2 +213,147,38,Alpha,152.9139987,0,Infection naive,BNT162b2,2 +213,62,38,Delta,202.7769085,0,Infection naive,BNT162b2,2 +213,147,38,Delta,78.7572612900001,0,Infection naive,BNT162b2,2 +214,0,-21,Ancestral,727.8050042,0,Infection naive,BNT162b2,2 +214,24,-21,Ancestral,980.478554,0,Infection naive,BNT162b2,2 +214,0,-21,Alpha,539.3003024,0,Infection naive,BNT162b2,2 +214,24,-21,Alpha,334.189232900001,0,Infection naive,BNT162b2,2 +214,75,-21,Alpha,203.8461127,0,Infection naive,BNT162b2,2 +214,0,-21,Delta,236.8070462,0,Infection naive,BNT162b2,2 +214,24,-21,Delta,184.139233300001,0,Infection naive,BNT162b2,2 +214,75,-21,Delta,151.3140907,0,Infection naive,BNT162b2,2 +215,119,87,Ancestral,181.7341272,0,Infection naive,AZD1222,1 +215,119,87,Alpha,5,-1,Infection naive,AZD1222,1 +215,119,87,Delta,5,-1,Infection naive,AZD1222,1 +216,3,-17,Ancestral,617.7778794,0,Infection naive,BNT162b2,2 +216,24,-17,Ancestral,477.440736200001,0,Infection naive,BNT162b2,2 +216,3,-17,Alpha,371.254033700001,0,Infection naive,BNT162b2,2 +216,24,-17,Alpha,232.284476699999,0,Infection naive,BNT162b2,2 +216,69,-17,Alpha,204.9209546,0,Infection naive,BNT162b2,2 +216,153,-17,Alpha,132.2081837,0,Infection naive,BNT162b2,2 +216,3,-17,Delta,229.0496805,0,Infection naive,BNT162b2,2 +216,24,-17,Delta,166.7754785,0,Infection naive,BNT162b2,2 +216,69,-17,Delta,97.4518367100002,0,Infection naive,BNT162b2,2 +216,153,-17,Delta,43.9697831399999,0,Infection naive,BNT162b2,2 +217,21,16,Ancestral,267.48893,0,Infection naive,BNT162b2,4 +217,68,16,Ancestral,219.4206732,0,Infection naive,BNT162b2,4 +217,152,16,Ancestral,377.819441999999,0,Infection naive,BNT162b2,4 +217,21,16,Alpha,103.7090388,0,Infection naive,BNT162b2,4 +217,21,16,Delta,76.9827724900003,0,Infection naive,BNT162b2,4 +217,68,16,Delta,85.5209025299999,0,Infection naive,BNT162b2,4 +217,152,16,Delta,123.9052733,0,Infection naive,BNT162b2,4 +218,27,-17,Ancestral,277.5194129,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,27,-17,Alpha,186.7397735,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,52,-17,Alpha,75.9107095599998,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,108,-17,Alpha,45.0622313999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,27,-17,Delta,106.5655786,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,52,-17,Delta,82.5021709899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +218,108,-17,Delta,41.24453684,0,Previously infected (Pre-Omicron),BNT162b2,3 +219,62,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +219,146,41,Ancestral,1354.877985,0,Infection naive,BNT162b2,2 +219,62,41,Alpha,1264.236594,0,Infection naive,BNT162b2,2 +219,146,41,Alpha,1240.092051,0,Infection naive,BNT162b2,2 +219,62,41,Delta,725.893770200002,0,Infection naive,BNT162b2,2 +219,146,41,Delta,892.704861899999,0,Infection naive,BNT162b2,2 +220,80,49,Ancestral,309.653059899999,0,Infection naive,BNT162b2,2 +220,160,49,Ancestral,208.1796046,0,Infection naive,BNT162b2,2 +220,291,49,Ancestral,116.0220635,0,Infection naive,BNT162b2,2 +220,80,49,Alpha,284.913514500001,0,Infection naive,BNT162b2,2 +220,160,49,Alpha,148.164318200001,0,Infection naive,BNT162b2,2 +220,291,49,Alpha,142.309354279994,0,Infection naive,BNT162b2,2 +220,80,49,Delta,187.0674127,0,Infection naive,BNT162b2,2 +220,160,49,Delta,175.0121818,0,Infection naive,BNT162b2,2 +220,291,49,Delta,40.7415217199999,0,Infection naive,BNT162b2,2 +221,60,39,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +221,60,39,Alpha,584.077350800001,0,Previously infected (Pre-Omicron),BNT162b2,3 +221,60,39,Delta,337.1312525,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,95,52,Ancestral,160.4661115,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,150,52,Ancestral,170.320899100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,95,52,Alpha,569.418194200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,150,52,Alpha,156.7132131,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,95,52,Delta,110.27131,0,Previously infected (Pre-Omicron),BNT162b2,3 +222,150,52,Delta,46.46603932,0,Previously infected (Pre-Omicron),BNT162b2,3 +223,84,68,Ancestral,2560,1,Previously infected (Pre-Omicron),AZD1222,2 +223,84,68,Alpha,992.584030628349,0,Previously infected (Pre-Omicron),AZD1222,2 +223,84,68,Delta,2560,1,Previously infected (Pre-Omicron),AZD1222,2 +224,69,45,Ancestral,1433.052741,0,Infection naive,BNT162b2,2 +224,153,45,Ancestral,136.0880493,0,Infection naive,BNT162b2,2 +224,69,45,Alpha,699.657533199999,0,Infection naive,BNT162b2,2 +224,153,45,Alpha,109.69292,0,Infection naive,BNT162b2,2 +224,69,45,Delta,278.494095800001,0,Infection naive,BNT162b2,2 +224,153,45,Delta,46.2628491,0,Infection naive,BNT162b2,2 +225,46,34,Ancestral,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +225,81,34,Ancestral,984.784896199998,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,159,34,Ancestral,145.7173155,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,46,34,Alpha,40.67016497,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,81,34,Alpha,558.543376799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,159,34,Alpha,174.7056566,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,46,34,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +225,81,34,Delta,347.3292193,0,Previously infected (Pre-Omicron),BNT162b2,3 +225,159,34,Delta,139.5915131,0,Previously infected (Pre-Omicron),BNT162b2,3 +226,38,33,Ancestral,1823.65462085467,0,Previously infected (Pre-Omicron),BNT162b2,3 +226,59,33,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +226,38,33,Alpha,944.212809897676,0,Previously infected (Pre-Omicron),BNT162b2,3 +226,59,33,Alpha,2450.32496399999,0,Previously infected (Pre-Omicron),BNT162b2,3 +226,38,33,Delta,1175.53050583235,0,Previously infected (Pre-Omicron),BNT162b2,3 +226,59,33,Delta,1220.680803,0,Previously infected (Pre-Omicron),BNT162b2,3 +227,76,54,Ancestral,1116.285275,0,Infection naive,BNT162b2,2 +227,150,54,Ancestral,565.4394316,0,Infection naive,BNT162b2,2 +227,76,54,Alpha,1164.251181,0,Infection naive,BNT162b2,2 +227,150,54,Alpha,270.7914815,0,Infection naive,BNT162b2,2 +227,76,54,Delta,504.104003999998,0,Infection naive,BNT162b2,2 +227,150,54,Delta,154.8019511,0,Infection naive,BNT162b2,2 +228,76,55,Ancestral,508.096322500001,0,Infection naive,BNT162b2,2 +228,256,55,Ancestral,175.6268464,0,Infection naive,BNT162b2,2 +228,76,55,Alpha,455.369609900001,0,Infection naive,BNT162b2,2 +228,256,55,Alpha,194.422716341038,0,Infection naive,BNT162b2,2 +228,76,55,Delta,205.2804932,0,Infection naive,BNT162b2,2 +228,256,55,Delta,130.1387196,0,Infection naive,BNT162b2,2 +229,75,75,Ancestral,529.000680191154,0,Previously infected (Pre-Omicron),BNT162b2,3 +229,75,75,Alpha,1644.46704994187,0,Previously infected (Pre-Omicron),BNT162b2,3 +229,75,75,Delta,331.854113211825,0,Previously infected (Pre-Omicron),BNT162b2,3 +230,5,-22,Ancestral,797.2660445,0,Infection naive,BNT162b2,2 +230,26,-22,Ancestral,646.586256,0,Infection naive,BNT162b2,2 +230,68,-22,Ancestral,473.274287600001,0,Infection naive,BNT162b2,2 +230,152,-22,Ancestral,381.479776,0,Infection naive,BNT162b2,2 +230,5,-22,Alpha,630.358252700001,0,Infection naive,BNT162b2,2 +230,26,-22,Alpha,474.9364861,0,Infection naive,BNT162b2,2 +230,68,-22,Alpha,254.899938100001,0,Infection naive,BNT162b2,2 +230,152,-22,Alpha,132.324114,0,Infection naive,BNT162b2,2 +230,5,-22,Delta,384.1640909,0,Infection naive,BNT162b2,2 +230,26,-22,Delta,358.463498,0,Infection naive,BNT162b2,2 +230,68,-22,Delta,225.6620542,0,Infection naive,BNT162b2,2 +230,152,-22,Delta,183.1733947,0,Infection naive,BNT162b2,2 +231,46,26,Ancestral,174.5525954,0,Infection naive,BNT162b2,2 +231,130,26,Ancestral,160.6068206,0,Infection naive,BNT162b2,2 +231,130,26,Ancestral,94.6734882000001,0,Infection naive,BNT162b2,2 +231,46,26,Alpha,122.501459,0,Infection naive,BNT162b2,2 +231,130,26,Alpha,185.4349447,0,Infection naive,BNT162b2,2 +231,130,26,Alpha,5,-1,Infection naive,BNT162b2,2 +231,46,26,Delta,124.7771433,0,Infection naive,BNT162b2,2 +231,130,26,Delta,227.6486598,0,Infection naive,BNT162b2,2 +231,130,26,Delta,5,-1,Infection naive,BNT162b2,2 +232,80,67,Ancestral,210.3807757,0,Previously infected (Pre-Omicron),AZD1222,2 +232,80,67,Alpha,5,-1,Previously infected (Pre-Omicron),AZD1222,2 +232,80,67,Delta,44.59075447,0,Previously infected (Pre-Omicron),AZD1222,2 +233,62,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +233,145,41,Ancestral,164.021103826873,0,Infection naive,BNT162b2,2 +233,62,41,Alpha,1139.017209,0,Infection naive,BNT162b2,2 +233,145,41,Alpha,282.922704859781,0,Infection naive,BNT162b2,2 +233,62,41,Delta,423.047306599999,0,Infection naive,BNT162b2,2 +233,145,41,Delta,170.769343633808,0,Infection naive,BNT162b2,2 +234,117,84,Ancestral,206.182101900001,0,Infection naive,AZD1222,2 +234,151,84,Ancestral,151.0490716,0,Infection naive,AZD1222,2 +234,231,84,Ancestral,115.5147134,0,Infection naive,AZD1222,2 +234,313,84,Ancestral,146.8713431,0,Infection naive,AZD1222,2 +234,117,84,Alpha,89.6659807099998,0,Infection naive,AZD1222,2 +234,151,84,Alpha,84.2560552900003,0,Infection naive,AZD1222,2 +234,231,84,Alpha,5,-1,Infection naive,AZD1222,2 +234,313,84,Alpha,5,-1,Infection naive,AZD1222,2 +234,117,84,Delta,56.74469133,0,Infection naive,AZD1222,2 +234,151,84,Delta,49.4495377399999,0,Infection naive,AZD1222,2 +234,231,84,Delta,5,-1,Infection naive,AZD1222,2 +234,313,84,Delta,5,-1,Infection naive,AZD1222,2 +235,81,53,Ancestral,474.9364861,0,Infection naive,BNT162b2,2 +235,151,53,Ancestral,213.726247800001,0,Infection naive,BNT162b2,2 +235,242,53,Ancestral,146.8713431,0,Infection naive,BNT162b2,2 +235,81,53,Alpha,488.445967700001,0,Infection naive,BNT162b2,2 +235,151,53,Alpha,170.470249599999,0,Infection naive,BNT162b2,2 +235,242,53,Alpha,196.82315603441,0,Infection naive,BNT162b2,2 +235,81,53,Delta,361.302397200001,0,Infection naive,BNT162b2,2 +235,151,53,Delta,139.2249423,0,Infection naive,BNT162b2,2 +235,242,53,Delta,74.78799629,0,Infection naive,BNT162b2,2 +236,80,54,Ancestral,864.218633100003,0,Infection naive,BNT162b2,2 +236,168,54,Ancestral,122.9316995,0,Infection naive,BNT162b2,2 +236,242,54,Ancestral,153.7202852,0,Infection naive,BNT162b2,2 +236,80,54,Alpha,401.726264699999,0,Infection naive,BNT162b2,2 +236,168,54,Alpha,213.726247800001,0,Infection naive,BNT162b2,2 +236,242,54,Alpha,153.855079039045,0,Infection naive,BNT162b2,2 +236,80,54,Delta,216.744635999999,0,Infection naive,BNT162b2,2 +236,168,54,Delta,124.5586024,0,Infection naive,BNT162b2,2 +236,242,54,Delta,59.28680425,0,Infection naive,BNT162b2,2 +237,84,69,Ancestral,110.7556306,0,Infection naive,AZD1222,1 +237,84,69,Alpha,5,-1,Infection naive,AZD1222,1 +237,84,69,Delta,5,-1,Infection naive,AZD1222,1 +238,7,-23,Ancestral,132.208183677306,0,Previously infected (Pre-Omicron),BNT162b2,2 +238,28,-23,Ancestral,146.614105212046,0,Previously infected (Pre-Omicron),BNT162b2,2 +238,7,-23,Alpha,127.54147645632,0,Previously infected (Pre-Omicron),BNT162b2,2 +238,28,-23,Alpha,54.1214982344394,0,Previously infected (Pre-Omicron),BNT162b2,2 +238,7,-23,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +238,28,-23,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,2 +239,124,89,Ancestral,513.918889000001,0,Previously infected (Pre-Omicron),AZD1222,3 +239,159,89,Ancestral,178.419662,0,Previously infected (Pre-Omicron),AZD1222,3 +239,342,89,Ancestral,238.8917662,0,Previously infected (Pre-Omicron),AZD1222,3 +239,124,89,Alpha,381.479776,0,Previously infected (Pre-Omicron),AZD1222,3 +239,159,89,Alpha,179.2032958,0,Previously infected (Pre-Omicron),AZD1222,3 +239,124,89,Delta,193.2334973,0,Previously infected (Pre-Omicron),AZD1222,3 +239,159,89,Delta,191.8832941,0,Previously infected (Pre-Omicron),AZD1222,3 +239,342,89,Delta,205.2804932,0,Previously infected (Pre-Omicron),AZD1222,3 +240,54,34,Ancestral,443.551816099999,0,Infection naive,BNT162b2,2 +240,54,34,Alpha,405.2628435,0,Infection naive,BNT162b2,2 +240,54,34,Delta,421.566711600001,0,Infection naive,BNT162b2,2 +241,76,52,Ancestral,360.669594000001,0,Infection naive,BNT162b2,2 +241,151,52,Ancestral,210.7498937,0,Infection naive,BNT162b2,2 +241,76,52,Alpha,375.179459799999,0,Infection naive,BNT162b2,2 +241,151,52,Alpha,170.769343600001,0,Infection naive,BNT162b2,2 +241,76,52,Delta,134.4283302,0,Infection naive,BNT162b2,2 +241,151,52,Delta,51.8917502899999,0,Infection naive,BNT162b2,2 +242,84,50,Ancestral,1099.775506,0,Infection naive,BNT162b2,2 +242,159,50,Ancestral,355.646905200001,0,Infection naive,BNT162b2,2 +242,252,50,Ancestral,275.5802689,0,Infection naive,BNT162b2,2 +242,84,50,Alpha,1260.916677,0,Infection naive,BNT162b2,2 +242,159,50,Alpha,429.3980694,0,Infection naive,BNT162b2,2 +242,252,50,Alpha,413.515579682548,0,Infection naive,BNT162b2,2 +242,84,50,Delta,583.565635300001,0,Infection naive,BNT162b2,2 +242,159,50,Delta,178.107168800001,0,Infection naive,BNT162b2,2 +242,252,50,Delta,177.0177465,0,Infection naive,BNT162b2,2 +243,53,42,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +243,244,42,Ancestral,450.605170699999,0,Previously infected (Pre-Omicron),BNT162b2,3 +243,53,42,Alpha,806.402372399998,0,Previously infected (Pre-Omicron),BNT162b2,3 +243,244,42,Alpha,320.983179424583,0,Previously infected (Pre-Omicron),BNT162b2,3 +243,53,42,Delta,1561.588019,0,Previously infected (Pre-Omicron),BNT162b2,3 +243,244,42,Delta,179.0462942,0,Previously infected (Pre-Omicron),BNT162b2,3 +244,76,67,Ancestral,656.868261300003,0,Infection naive,BNT162b2,2 +244,76,67,Alpha,641.505766099999,0,Infection naive,BNT162b2,2 +244,76,67,Delta,453.775892300001,0,Infection naive,BNT162b2,2 +245,76,56,Ancestral,2560,1,Infection naive,BNT162b2,2 +245,160,56,Ancestral,190.2087997,0,Infection naive,BNT162b2,2 +245,76,56,Alpha,1035.23459,0,Infection naive,BNT162b2,2 +245,160,56,Alpha,293.2747681,0,Infection naive,BNT162b2,2 +245,76,56,Delta,920.514984000001,0,Infection naive,BNT162b2,2 +245,160,56,Delta,227.050848700001,0,Infection naive,BNT162b2,2 +246,42,28,Ancestral,2560,1,Infection naive,BNT162b2,2 +246,62,28,Ancestral,155.7546505,0,Infection naive,BNT162b2,2 +246,104,28,Ancestral,295.597396500001,0,Infection naive,BNT162b2,2 +246,199,28,Ancestral,92.2165131599998,0,Infection naive,BNT162b2,2 +246,42,28,Alpha,338.611960600001,0,Infection naive,BNT162b2,2 +246,62,28,Alpha,305.0733162,0,Infection naive,BNT162b2,2 +246,104,28,Alpha,125.5450607,0,Infection naive,BNT162b2,2 +246,199,28,Alpha,153.7202852,0,Infection naive,BNT162b2,2 +246,42,28,Delta,145.7173155,0,Infection naive,BNT162b2,2 +246,62,28,Delta,136.0880493,0,Infection naive,BNT162b2,2 +246,104,28,Delta,92.2165131599998,0,Infection naive,BNT162b2,2 +246,199,28,Delta,50.50076786,0,Infection naive,BNT162b2,2 +247,39,34,Ancestral,2036.59773000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +247,62,34,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +247,39,34,Alpha,988.243583847195,0,Previously infected (Pre-Omicron),BNT162b2,3 +247,62,34,Alpha,1254.302975,0,Previously infected (Pre-Omicron),BNT162b2,3 +247,39,34,Delta,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +247,62,34,Delta,2551.13748200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +248,3,-18,Ancestral,2560,1,Infection naive,BNT162b2,2 +248,24,-18,Ancestral,2560,1,Infection naive,BNT162b2,2 +248,67,-18,Ancestral,2560,1,Infection naive,BNT162b2,2 +248,3,-18,Alpha,702.114817999998,0,Infection naive,BNT162b2,2 +248,24,-18,Alpha,712.030563400002,0,Infection naive,BNT162b2,2 +248,67,-18,Alpha,640.943737099998,0,Infection naive,BNT162b2,2 +248,3,-18,Delta,386.528356299999,0,Infection naive,BNT162b2,2 +248,24,-18,Delta,322.392963799999,0,Infection naive,BNT162b2,2 +248,67,-18,Delta,180.7809038,0,Infection naive,BNT162b2,2 +249,91,47,Ancestral,370.279111379964,0,Infection naive,BNT162b2,2 +249,91,47,Alpha,562.473614824264,0,Infection naive,BNT162b2,2 +249,91,47,Delta,278.250104602277,0,Infection naive,BNT162b2,2 +250,52,44,Ancestral,2560,1,Infection naive,BNT162b2,2 +250,52,44,Alpha,666.145003900002,0,Infection naive,BNT162b2,2 +250,52,44,Delta,482.0662063,0,Infection naive,BNT162b2,2 +251,117,91,Ancestral,335.362947300001,0,Infection naive,AZD1222,2 +251,150,91,Ancestral,409.189050599999,0,Infection naive,AZD1222,2 +251,228,91,Ancestral,171.9709766,0,Infection naive,AZD1222,2 +251,291,91,Ancestral,168.8345717,0,Infection naive,AZD1222,2 +251,117,91,Alpha,228.0480747,0,Infection naive,AZD1222,2 +251,150,91,Alpha,191.7151835,0,Infection naive,AZD1222,2 +251,228,91,Alpha,212.978241590407,0,Infection naive,AZD1222,2 +251,291,91,Alpha,80.997497209708,0,Infection naive,AZD1222,2 +251,117,91,Delta,243.5429794,0,Infection naive,AZD1222,2 +251,150,91,Delta,287.1699249,0,Infection naive,AZD1222,2 +251,228,91,Delta,74.78799629,0,Infection naive,AZD1222,2 +251,291,91,Delta,125.5450607,0,Infection naive,AZD1222,2 +252,21,-22,Ancestral,5,-1,Infection naive,BNT162b2,2 +252,21,-22,Alpha,209.0939465,0,Infection naive,BNT162b2,2 +252,42,-22,Alpha,139.3470255,0,Infection naive,BNT162b2,2 +252,90,-22,Alpha,153.855079,0,Infection naive,BNT162b2,2 +252,21,-22,Delta,5,-1,Infection naive,BNT162b2,2 +253,84,53,Ancestral,737.436922400002,0,Infection naive,BNT162b2,2 +253,168,53,Ancestral,114.3061066,0,Infection naive,BNT162b2,2 +253,84,53,Alpha,588.703028700001,0,Infection naive,BNT162b2,2 +253,168,53,Alpha,162.3049845,0,Infection naive,BNT162b2,2 +253,84,53,Delta,343.996563099999,0,Infection naive,BNT162b2,2 +253,168,53,Delta,76.6461363799998,0,Infection naive,BNT162b2,2 +254,84,41,Ancestral,305.340828000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,150,41,Ancestral,126.3177041,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,242,41,Ancestral,101.8175944,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,84,41,Alpha,489.732016200002,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,150,41,Alpha,112.0248427,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,242,41,Alpha,79.3809898542299,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,84,41,Delta,271.9808199,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,150,41,Delta,65.6893251900002,0,Previously infected (Pre-Omicron),BNT162b2,3 +254,242,41,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +255,84,48,Ancestral,2560,1,Infection naive,BNT162b2,2 +255,150,48,Ancestral,370.279111400002,0,Infection naive,BNT162b2,2 +255,238,48,Ancestral,342.192248199999,0,Infection naive,BNT162b2,2 +255,84,48,Alpha,783.411868400002,0,Infection naive,BNT162b2,2 +255,150,48,Alpha,381.479776,0,Infection naive,BNT162b2,2 +255,238,48,Alpha,168.982618852693,0,Infection naive,BNT162b2,2 +255,84,48,Delta,477.8593931,0,Infection naive,BNT162b2,2 +255,150,48,Delta,182.2126221,0,Infection naive,BNT162b2,2 +255,238,48,Delta,102.7139409,0,Infection naive,BNT162b2,2 +256,74,33,Ancestral,1740.875928,0,Infection naive,BNT162b2,2 +256,74,33,Alpha,450.2103914,0,Infection naive,BNT162b2,2 +256,74,33,Delta,146.1009803,0,Infection naive,BNT162b2,2 +257,54,35,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +257,91,35,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +257,179,35,Ancestral,298.7228729,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,54,35,Alpha,1098.811983,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,91,35,Alpha,435.080810000002,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,179,35,Alpha,272.219313700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,54,35,Delta,605.4485789,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,91,35,Delta,301.3526661,0,Previously infected (Pre-Omicron),BNT162b2,3 +257,179,35,Delta,166.0461901,0,Previously infected (Pre-Omicron),BNT162b2,3 +258,84,70,Ancestral,83.8141193200002,0,Infection naive,AZD1222,2 +258,159,70,Ancestral,5,-1,Infection naive,AZD1222,2 +258,84,70,Alpha,5,-1,Infection naive,AZD1222,2 +258,159,70,Alpha,5,-1,Infection naive,AZD1222,2 +258,307,70,Alpha,5,-1,Infection naive,AZD1222,2 +258,84,70,Delta,5,-1,Infection naive,AZD1222,2 +258,159,70,Delta,5,-1,Infection naive,AZD1222,2 +258,307,70,Delta,5,-1,Infection naive,AZD1222,2 +259,28,-18,Ancestral,455.768913199999,0,Previously infected (Pre-Omicron),BNT162b2,3 +259,54,-18,Ancestral,164.1649302,0,Previously infected (Pre-Omicron),BNT162b2,3 +259,28,-18,Alpha,154.5308232,0,Previously infected (Pre-Omicron),BNT162b2,3 +259,54,-18,Alpha,110.8527497,0,Previously infected (Pre-Omicron),BNT162b2,3 +259,28,-18,Delta,51.4389102,0,Previously infected (Pre-Omicron),BNT162b2,3 +259,54,-18,Delta,87.7994827499998,0,Previously infected (Pre-Omicron),BNT162b2,3 +260,3,-18,Ancestral,291.9923139,0,Infection naive,BNT162b2,2 +260,24,-18,Ancestral,338.9088817,0,Infection naive,BNT162b2,2 +260,74,-18,Ancestral,138.1309956,0,Infection naive,BNT162b2,2 +260,158,-18,Ancestral,151.7124915,0,Infection naive,BNT162b2,2 +260,3,-18,Alpha,190.8768368,0,Infection naive,BNT162b2,2 +260,24,-18,Alpha,130.3670511,0,Infection naive,BNT162b2,2 +260,74,-18,Alpha,103.7090388,0,Infection naive,BNT162b2,2 +260,158,-18,Alpha,65.9778380900002,0,Infection naive,BNT162b2,2 +260,3,-18,Delta,160.0447235,0,Infection naive,BNT162b2,2 +260,24,-18,Delta,159.7644131,0,Infection naive,BNT162b2,2 +260,74,-18,Delta,81.8539180400001,0,Infection naive,BNT162b2,2 +260,158,-18,Delta,98.9147783000003,0,Infection naive,BNT162b2,2 +261,80,60,Ancestral,1267.565252,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,168,60,Ancestral,204.5620457,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,277,60,Ancestral,236.8070462,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,80,60,Alpha,449.421870300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,168,60,Alpha,244.3983328,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,277,60,Alpha,291.480903887568,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,80,60,Delta,867.253876999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,168,60,Delta,242.4779962,0,Previously infected (Pre-Omicron),BNT162b2,3 +261,277,60,Delta,110.6585966,0,Previously infected (Pre-Omicron),BNT162b2,3 +262,62,48,Ancestral,2560,1,Infection naive,BNT162b2,2 +262,160,48,Ancestral,354.7129676,0,Infection naive,BNT162b2,2 +262,62,48,Alpha,1184.840275,0,Infection naive,BNT162b2,2 +262,160,48,Alpha,667.313770799999,0,Infection naive,BNT162b2,2 +262,62,48,Delta,557.565115799999,0,Infection naive,BNT162b2,2 +262,160,48,Delta,288.431198699999,0,Infection naive,BNT162b2,2 +263,76,44,Ancestral,494.4765649,0,Infection naive,BNT162b2,2 +263,76,44,Alpha,356.895981600001,0,Infection naive,BNT162b2,2 +263,76,44,Delta,458.573856899999,0,Infection naive,BNT162b2,2 +264,67,40,Ancestral,630.358252700001,0,Infection naive,BNT162b2,2 +264,67,40,Alpha,1529.08181300001,0,Infection naive,BNT162b2,2 +264,67,40,Delta,522.091219700001,0,Infection naive,BNT162b2,2 +265,26,-24,Ancestral,169.5761069,0,Infection naive,BNT162b2,2 +265,47,-24,Ancestral,136.5660075,0,Infection naive,BNT162b2,2 +265,26,-24,Alpha,112.6155285,0,Infection naive,BNT162b2,2 +265,47,-24,Alpha,90.3761023199997,0,Infection naive,BNT162b2,2 +265,89,-24,Alpha,127.0951026,0,Infection naive,BNT162b2,2 +265,173,-24,Alpha,129.1161671,0,Infection naive,BNT162b2,2 +265,26,-24,Delta,57.0939158300001,0,Infection naive,BNT162b2,2 +265,47,-24,Delta,42.15827502,0,Infection naive,BNT162b2,2 +265,89,-24,Delta,57.6470445899999,0,Infection naive,BNT162b2,2 +265,173,-24,Delta,91.1717242,0,Infection naive,BNT162b2,2 +266,76,48,Ancestral,1262.022346,0,Infection naive,BNT162b2,2 +266,151,48,Ancestral,324.0928808,0,Infection naive,BNT162b2,2 +266,76,48,Alpha,1497.25226,0,Infection naive,BNT162b2,2 +266,151,48,Alpha,369.306749200001,0,Infection naive,BNT162b2,2 +266,76,48,Delta,1020.817902,0,Infection naive,BNT162b2,2 +266,151,48,Delta,230.8636698,0,Infection naive,BNT162b2,2 +267,102,70,Ancestral,413.515579700001,0,Infection naive,BNT162b2,2 +267,151,70,Ancestral,317.0684939,0,Infection naive,BNT162b2,2 +267,307,70,Ancestral,129.7969721,0,Infection naive,BNT162b2,2 +267,102,70,Alpha,337.7227572,0,Infection naive,BNT162b2,2 +267,151,70,Alpha,190.042156000001,0,Infection naive,BNT162b2,2 +267,307,70,Alpha,71.6439877140535,0,Infection naive,BNT162b2,2 +267,102,70,Delta,251.570601999999,0,Infection naive,BNT162b2,2 +267,151,70,Delta,224.675262,0,Infection naive,BNT162b2,2 +267,307,70,Delta,53.1810232499998,0,Infection naive,BNT162b2,2 +268,81,75,Ancestral,163.590380327854,0,Infection naive,AZD1222,2 +268,150,75,Ancestral,107.2214163,0,Infection naive,AZD1222,2 +268,81,75,Alpha,163.3038598957,0,Infection naive,AZD1222,2 +268,150,75,Alpha,81.06852207,0,Infection naive,AZD1222,2 +268,81,75,Delta,81.6389676192483,0,Infection naive,AZD1222,2 +268,150,75,Delta,60.7065783099999,0,Infection naive,AZD1222,2 +269,84,48,Ancestral,711.406746999998,0,Infection naive,BNT162b2,2 +269,160,48,Ancestral,107.2214163,0,Infection naive,BNT162b2,2 +269,84,48,Alpha,235.152376499999,0,Infection naive,BNT162b2,2 +269,160,48,Alpha,112.1230748,0,Infection naive,BNT162b2,2 +269,84,48,Delta,89.7446067599999,0,Infection naive,BNT162b2,2 +269,160,48,Delta,56.7944494599999,0,Infection naive,BNT162b2,2 +270,131,82,Ancestral,221.740700900001,0,Infection naive,AZD1222,1 +270,131,82,Alpha,157.539532143869,0,Infection naive,AZD1222,1 +270,131,82,Delta,40.4568437,0,Infection naive,AZD1222,1 +271,20,-18,Ancestral,559.523354199999,0,Infection naive,BNT162b2,2 +271,41,-18,Ancestral,358.777826499999,0,Infection naive,BNT162b2,2 +271,75,-18,Ancestral,344.902285100001,0,Infection naive,BNT162b2,2 +271,154,-18,Ancestral,186.7397735,0,Infection naive,BNT162b2,2 +271,20,-18,Alpha,487.1632965,0,Infection naive,BNT162b2,2 +271,41,-18,Alpha,262.150520300001,0,Infection naive,BNT162b2,2 +271,75,-18,Alpha,187.889028099999,0,Infection naive,BNT162b2,2 +271,154,-18,Alpha,82.5021709899999,0,Infection naive,BNT162b2,2 +271,20,-18,Delta,190.042156000001,0,Infection naive,BNT162b2,2 +271,41,-18,Delta,246.7660763,0,Infection naive,BNT162b2,2 +271,75,-18,Delta,190.7096078,0,Infection naive,BNT162b2,2 +271,154,-18,Delta,85.89651734,0,Infection naive,BNT162b2,2 +272,96,53,Ancestral,2560,1,Infection naive,BNT162b2,2 +272,150,53,Ancestral,186.9035213,0,Infection naive,BNT162b2,2 +272,307,53,Ancestral,248.067227000001,0,Infection naive,BNT162b2,2 +272,96,53,Alpha,864.976446700001,0,Infection naive,BNT162b2,2 +272,150,53,Alpha,260.7755005,0,Infection naive,BNT162b2,2 +272,307,53,Alpha,156.850631321271,0,Infection naive,BNT162b2,2 +272,96,53,Delta,406.329875899999,0,Infection naive,BNT162b2,2 +272,150,53,Delta,141.3149794,0,Infection naive,BNT162b2,2 +272,307,53,Delta,95.5906897799999,0,Infection naive,BNT162b2,2 +273,39,39,Ancestral,397.5230848,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,88,39,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +273,172,39,Ancestral,1047.097936,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,39,39,Alpha,200.303857279495,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,88,39,Alpha,1137.022277,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,172,39,Alpha,416.790471097569,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,39,39,Delta,123.4716256,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,88,39,Delta,2324.793169,0,Previously infected (Pre-Omicron),BNT162b2,3 +273,172,39,Delta,638.700541000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +274,28,26,Ancestral,124.886557571153,0,Infection naive,BNT162b2,2 +274,70,26,Ancestral,2560,1,Infection naive,BNT162b2,2 +274,154,26,Ancestral,198.729988805792,0,Infection naive,BNT162b2,2 +274,28,26,Alpha,123.147385999295,0,Infection naive,BNT162b2,2 +274,70,26,Alpha,354.091705500001,0,Infection naive,BNT162b2,2 +274,154,26,Alpha,287.926025764238,0,Infection naive,BNT162b2,2 +274,28,26,Delta,52.348576940565,0,Infection naive,BNT162b2,2 +274,70,26,Delta,221.740700900001,0,Infection naive,BNT162b2,2 +274,154,26,Delta,170.619731080311,0,Infection naive,BNT162b2,2 +275,81,67,Ancestral,329.824271999999,0,Infection naive,BNT162b2,2 +275,159,67,Ancestral,356.895981600001,0,Infection naive,BNT162b2,2 +275,81,67,Alpha,162.8750199,0,Infection naive,BNT162b2,2 +275,159,67,Alpha,214.1012355,0,Infection naive,BNT162b2,2 +275,81,67,Delta,160.4661115,0,Infection naive,BNT162b2,2 +275,159,67,Delta,72.02175288,0,Infection naive,BNT162b2,2 +276,76,59,Ancestral,370.928774700001,0,Infection naive,BNT162b2,2 +276,168,59,Ancestral,215.041585700001,0,Infection naive,BNT162b2,2 +276,270,59,Ancestral,311.83196,0,Infection naive,BNT162b2,2 +276,76,59,Alpha,273.8946361,0,Infection naive,BNT162b2,2 +276,168,59,Alpha,145.9729799,0,Infection naive,BNT162b2,2 +276,270,59,Alpha,166.629365,0,Infection naive,BNT162b2,2 +276,76,59,Delta,190.8768368,0,Infection naive,BNT162b2,2 +276,168,59,Delta,162.8750199,0,Infection naive,BNT162b2,2 +276,270,59,Delta,105.6356202,0,Infection naive,BNT162b2,2 +277,3,-18,Ancestral,598.589004999999,0,Infection naive,BNT162b2,2 +277,27,-18,Ancestral,76.3109723399998,0,Infection naive,BNT162b2,2 +277,3,-18,Alpha,474.104658399999,0,Infection naive,BNT162b2,2 +277,27,-18,Alpha,5,-1,Infection naive,BNT162b2,2 +277,3,-18,Delta,255.7951785,0,Infection naive,BNT162b2,2 +277,27,-18,Delta,5,-1,Infection naive,BNT162b2,2 +278,76,58,Ancestral,195.105553200001,0,Infection naive,BNT162b2,2 +278,151,58,Ancestral,124.5586024,0,Infection naive,BNT162b2,2 +278,76,58,Alpha,472.445371200002,0,Infection naive,BNT162b2,2 +278,151,58,Alpha,89.98089884,0,Infection naive,BNT162b2,2 +278,76,58,Delta,168.096279000001,0,Infection naive,BNT162b2,2 +278,151,58,Delta,82.0694344200001,0,Infection naive,BNT162b2,2 +279,0,-20,Ancestral,514.369532699999,0,Infection naive,BNT162b2,2 +279,21,-20,Ancestral,351.001678200001,0,Infection naive,BNT162b2,2 +279,75,-20,Ancestral,293.531934100001,0,Infection naive,BNT162b2,2 +279,0,-20,Alpha,436.608868200001,0,Infection naive,BNT162b2,2 +279,21,-20,Alpha,305.8765556,0,Infection naive,BNT162b2,2 +279,75,-20,Alpha,118.8005084,0,Infection naive,BNT162b2,2 +279,0,-20,Delta,222.129750100001,0,Infection naive,BNT162b2,2 +279,21,-20,Delta,127.0951026,0,Infection naive,BNT162b2,2 +279,75,-20,Delta,62.37866742,0,Infection naive,BNT162b2,2 +280,80,54,Ancestral,652.850416600002,0,Infection naive,BNT162b2,2 +280,159,54,Ancestral,99.4363371700003,0,Infection naive,BNT162b2,2 +280,80,54,Alpha,368.983196300001,0,Infection naive,BNT162b2,2 +280,159,54,Alpha,125.4350696,0,Infection naive,BNT162b2,2 +280,80,54,Delta,209.0939465,0,Infection naive,BNT162b2,2 +280,159,54,Delta,100.3996815,0,Infection naive,BNT162b2,2 +281,42,41,Ancestral,107.127478692248,0,Infection naive,BNT162b2,2 +281,74,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +281,119,41,Ancestral,2560,1,Infection naive,BNT162b2,2 +281,210,41,Ancestral,156.0279256,0,Infection naive,BNT162b2,2 +281,42,41,Alpha,5,-1,Infection naive,BNT162b2,2 +281,74,41,Alpha,480.379055100002,0,Infection naive,BNT162b2,2 +281,119,41,Alpha,279.227353800001,0,Infection naive,BNT162b2,2 +281,210,41,Alpha,211.6755245,0,Infection naive,BNT162b2,2 +281,42,41,Delta,5,-1,Infection naive,BNT162b2,2 +281,74,41,Delta,255.123454000001,0,Infection naive,BNT162b2,2 +281,119,41,Delta,343.695184599999,0,Infection naive,BNT162b2,2 +281,210,41,Delta,131.3995102,0,Infection naive,BNT162b2,2 +282,7,-19,Ancestral,571.418062100002,0,Infection naive,BNT162b2,2 +282,28,-19,Ancestral,553.184101099999,0,Infection naive,BNT162b2,2 +282,73,-19,Ancestral,404.1986132,0,Infection naive,BNT162b2,2 +282,157,-19,Ancestral,296.375686400001,0,Infection naive,BNT162b2,2 +282,7,-19,Alpha,427.145810499999,0,Infection naive,BNT162b2,2 +282,28,-19,Alpha,653.4228862,0,Infection naive,BNT162b2,2 +282,73,-19,Alpha,192.5572123,0,Infection naive,BNT162b2,2 +282,157,-19,Alpha,102.5340426,0,Infection naive,BNT162b2,2 +282,7,-19,Delta,208.1796046,0,Infection naive,BNT162b2,2 +282,28,-19,Delta,245.686998900001,0,Infection naive,BNT162b2,2 +282,73,-19,Delta,173.789298600001,0,Infection naive,BNT162b2,2 +282,157,-19,Delta,102.8040085,0,Infection naive,BNT162b2,2 +283,80,47,Ancestral,1075.938979,0,Previously infected (Pre-Omicron),BNT162b2,3 +283,150,47,Ancestral,495.7784916,0,Previously infected (Pre-Omicron),BNT162b2,3 +283,80,47,Alpha,775.21519,0,Previously infected (Pre-Omicron),BNT162b2,3 +283,150,47,Alpha,283.419099300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +283,80,47,Delta,1055.390567,0,Previously infected (Pre-Omicron),BNT162b2,3 +283,150,47,Delta,251.7911985,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,20,-18,Ancestral,581.523253000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,54,-18,Ancestral,183.1733947,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,20,-18,Alpha,224.085259200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,54,-18,Alpha,48.8036602599998,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,20,-18,Delta,98.4822362500002,0,Previously infected (Pre-Omicron),BNT162b2,3 +284,54,-18,Delta,42.7911527100001,0,Previously infected (Pre-Omicron),BNT162b2,3 +285,102,89,Ancestral,458.1720963,0,Previously infected (Pre-Omicron),AZD1222,4 +285,160,89,Ancestral,252.2329721,0,Previously infected (Pre-Omicron),AZD1222,4 +285,307,89,Ancestral,178.2633469,0,Previously infected (Pre-Omicron),AZD1222,4 +285,102,89,Alpha,235.771518399999,0,Previously infected (Pre-Omicron),AZD1222,4 +285,160,89,Alpha,119.5316437,0,Previously infected (Pre-Omicron),AZD1222,4 +285,307,89,Alpha,91.3316871172036,0,Previously infected (Pre-Omicron),AZD1222,4 +285,102,89,Delta,249.375238500001,0,Previously infected (Pre-Omicron),AZD1222,4 +285,160,89,Delta,159.7644131,0,Previously infected (Pre-Omicron),AZD1222,4 +285,307,89,Delta,45.7387031300002,0,Previously infected (Pre-Omicron),AZD1222,4 +286,124,91,Ancestral,202.067223099999,0,Infection naive,AZD1222,1 +286,124,91,Alpha,5,-1,Infection naive,AZD1222,1 +286,124,91,Delta,5,-1,Infection naive,AZD1222,1 +287,119,97,Ancestral,267.0204364,0,Previously infected (Pre-Omicron),AZD1222,3 +287,119,97,Alpha,384.1640909,0,Previously infected (Pre-Omicron),AZD1222,3 +287,119,97,Delta,315.4054209,0,Previously infected (Pre-Omicron),AZD1222,3 +288,133,98,Ancestral,93.3550641612179,0,Previously infected (Pre-Omicron),AZD1222,2 +288,133,98,Alpha,5,-1,Previously infected (Pre-Omicron),AZD1222,2 +288,133,98,Delta,5,-1,Previously infected (Pre-Omicron),AZD1222,2 +289,81,54,Ancestral,2560,1,Infection naive,BNT162b2,2 +289,150,54,Ancestral,1136.026121,0,Infection naive,BNT162b2,2 +289,81,54,Alpha,1023.505653,0,Infection naive,BNT162b2,2 +289,150,54,Alpha,965.131054,0,Infection naive,BNT162b2,2 +289,81,54,Delta,1324.351075,0,Infection naive,BNT162b2,2 +289,150,54,Delta,965.131054,0,Infection naive,BNT162b2,2 +290,73,26,Ancestral,2560,1,Infection naive,BNT162b2,2 +290,150,26,Ancestral,80.9265345799999,0,Infection naive,BNT162b2,2 +290,73,26,Alpha,347.0249211,0,Infection naive,BNT162b2,2 +290,150,26,Alpha,137.889066,0,Infection naive,BNT162b2,2 +290,73,26,Delta,175.0121818,0,Infection naive,BNT162b2,2 +290,150,26,Delta,82.5021709899999,0,Infection naive,BNT162b2,2 +291,20,-9,Ancestral,979.619547991975,0,Previously infected (Pre-Omicron),BNT162b2,2 +291,20,-9,Alpha,930.247978689868,0,Previously infected (Pre-Omicron),BNT162b2,2 +291,20,-9,Delta,677.331448270097,0,Previously infected (Pre-Omicron),BNT162b2,2 +292,33,26,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +292,54,26,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +292,103,26,Ancestral,1905.352765,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,187,26,Ancestral,776.575323100002,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,33,26,Alpha,1743.930335,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,54,26,Alpha,1439.346826,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,103,26,Alpha,1046.180564,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,187,26,Alpha,447.8489687,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,33,26,Delta,1327.838011,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,54,26,Delta,1676.48475799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,103,26,Delta,973.627541000001,0,Previously infected (Pre-Omicron),BNT162b2,3 +292,187,26,Delta,448.241677300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +293,3,-18,Ancestral,171.369106900001,0,Infection naive,BNT162b2,2 +293,24,-18,Ancestral,159.6244421,0,Infection naive,BNT162b2,2 +293,67,-18,Ancestral,207.8149884,0,Infection naive,BNT162b2,2 +293,150,-18,Ancestral,47.95559391,0,Infection naive,BNT162b2,2 +293,3,-18,Alpha,301.6169153,0,Infection naive,BNT162b2,2 +293,24,-18,Alpha,152.111941300001,0,Infection naive,BNT162b2,2 +293,67,-18,Alpha,149.3377252,0,Infection naive,BNT162b2,2 +293,150,-18,Alpha,91.0120414500003,0,Infection naive,BNT162b2,2 +293,3,-18,Delta,211.861138,0,Infection naive,BNT162b2,2 +293,24,-18,Delta,121.0074409,0,Infection naive,BNT162b2,2 +293,67,-18,Delta,94.1769112,0,Infection naive,BNT162b2,2 +293,150,-18,Delta,5,-1,Infection naive,BNT162b2,2 +294,81,69,Ancestral,225.06946,0,Infection naive,AZD1222,2 +294,150,69,Ancestral,72.6557930900001,0,Infection naive,AZD1222,2 +294,81,69,Alpha,164.021103800001,0,Infection naive,AZD1222,2 +294,150,69,Alpha,97.5372900100001,0,Infection naive,AZD1222,2 +294,81,69,Delta,67.2624239800003,0,Infection naive,AZD1222,2 +294,150,69,Delta,46.3846563599999,0,Infection naive,AZD1222,2 +295,39,39,Ancestral,111.9266968,0,Infection naive,BNT162b2,2 +295,61,39,Ancestral,1050.775475,0,Infection naive,BNT162b2,2 +295,103,39,Ancestral,629.805990200002,0,Infection naive,BNT162b2,2 +295,180,39,Ancestral,316.235864099999,0,Infection naive,BNT162b2,2 +295,39,39,Alpha,57.7988257483812,0,Infection naive,BNT162b2,2 +295,61,39,Alpha,586.128703399999,0,Infection naive,BNT162b2,2 +295,103,39,Alpha,399.9695656,0,Infection naive,BNT162b2,2 +295,180,39,Alpha,247.632749599999,0,Infection naive,BNT162b2,2 +295,39,39,Delta,5,-1,Infection naive,BNT162b2,2 +295,61,39,Delta,579.4880186,0,Infection naive,BNT162b2,2 +295,103,39,Delta,339.503505299999,0,Infection naive,BNT162b2,2 +295,180,39,Delta,172.1217741,0,Infection naive,BNT162b2,2 +296,131,90,Ancestral,255.795178527938,0,Previously infected (Pre-Omicron),AZD1222,2 +296,131,90,Alpha,787.542650715989,0,Previously infected (Pre-Omicron),AZD1222,2 +296,131,90,Delta,321.264642258916,0,Previously infected (Pre-Omicron),AZD1222,2 +297,133,91,Ancestral,197.6876195,0,Infection naive,AZD1222,2 +297,133,91,Alpha,64.0968121900002,0,Infection naive,AZD1222,2 +297,133,91,Delta,5,-1,Infection naive,AZD1222,2 +298,133,95,Ancestral,388.907172099179,0,Infection naive,AZD1222,2 +298,168,95,Ancestral,379.146391096023,0,Infection naive,AZD1222,2 +298,231,95,Ancestral,165.465056107443,0,Infection naive,AZD1222,2 +298,133,95,Alpha,601.218056900837,0,Infection naive,AZD1222,2 +298,168,95,Alpha,315.12909135797,0,Infection naive,AZD1222,2 +298,231,95,Alpha,180.148200793166,0,Infection naive,AZD1222,2 +298,133,95,Delta,355.335319792884,0,Infection naive,AZD1222,2 +298,168,95,Delta,321.828308569038,0,Infection naive,AZD1222,2 +298,231,95,Delta,127.429736224945,0,Infection naive,AZD1222,2 +299,46,41,Ancestral,143.185170342123,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,84,41,Ancestral,888.801174300003,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,159,41,Ancestral,72.7195032999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,46,41,Alpha,320.701963182361,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,84,41,Alpha,747.8515108,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,159,41,Alpha,84.7003214900002,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,238,41,Alpha,146.485655279567,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,46,41,Delta,118.384726415322,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,84,41,Delta,192.5572123,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,159,41,Delta,82.8645272899999,0,Previously infected (Pre-Omicron),BNT162b2,3 +299,238,41,Delta,101.5502189,0,Previously infected (Pre-Omicron),BNT162b2,3 +300,59,29,Ancestral,2560,1,Infection naive,BNT162b2,2 +300,59,29,Alpha,830.795437600003,0,Infection naive,BNT162b2,2 +300,59,29,Delta,297.677392700001,0,Infection naive,BNT162b2,2 +301,76,45,Ancestral,1521.061544,0,Infection naive,BNT162b2,2 +301,76,45,Alpha,1395.862025,0,Infection naive,BNT162b2,2 +301,76,45,Delta,523.924869300001,0,Infection naive,BNT162b2,2 +302,80,48,Ancestral,813.501498699998,0,Infection naive,BNT162b2,2 +302,151,48,Ancestral,297.1560255,0,Infection naive,BNT162b2,2 +302,238,48,Ancestral,275.5802689,0,Infection naive,BNT162b2,2 +302,80,48,Alpha,391.643750499999,0,Infection naive,BNT162b2,2 +302,151,48,Alpha,472.445371200002,0,Infection naive,BNT162b2,2 +302,238,48,Alpha,199.777854367301,0,Infection naive,BNT162b2,2 +302,80,48,Delta,236.185184999999,0,Infection naive,BNT162b2,2 +302,151,48,Delta,183.8167226,0,Infection naive,BNT162b2,2 +302,238,48,Delta,120.1619114,0,Infection naive,BNT162b2,2 +303,32,32,Ancestral,134.310556300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +303,32,32,Alpha,64.4347825330459,0,Previously infected (Pre-Omicron),BNT162b2,3 +303,32,32,Delta,5,-1,Previously infected (Pre-Omicron),BNT162b2,3 +304,0,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +304,48,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +304,90,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +304,174,-18,Ancestral,626.502560999998,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,0,-18,Alpha,2094.528381,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,48,-18,Alpha,1015.463555,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,90,-18,Alpha,1237.920091,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,174,-18,Alpha,1664.770459,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,0,-18,Delta,895.055299400003,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,48,-18,Delta,540.246517400001,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,90,-18,Delta,468.733176700001,0,Previously infected (Pre-Omicron),BNT162b2,3 +304,174,-18,Delta,813.501498699998,0,Previously infected (Pre-Omicron),BNT162b2,3 +305,46,46,Ancestral,130.36705105991,0,Infection naive,AZD1222,1 +305,102,46,Ancestral,111.828636774095,0,Infection naive,AZD1222,1 +305,46,46,Alpha,5,-1,Infection naive,AZD1222,1 +305,102,46,Alpha,5,-1,Infection naive,AZD1222,1 +305,46,46,Delta,5,-1,Infection naive,AZD1222,1 +305,102,46,Delta,5,-1,Infection naive,AZD1222,1 +306,4,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +306,25,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +306,70,-18,Ancestral,2011.75954500001,0,Previously infected (Pre-Omicron),BNT162b2,3 +306,4,-18,Alpha,2146.567843,0,Previously infected (Pre-Omicron),BNT162b2,3 +306,25,-18,Alpha,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +306,70,-18,Alpha,1990.710915,0,Previously infected (Pre-Omicron),BNT162b2,3 +306,4,-18,Delta,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +306,25,-18,Delta,2308.548869,0,Previously infected (Pre-Omicron),BNT162b2,3 +306,70,-18,Delta,884.139275500002,0,Previously infected (Pre-Omicron),BNT162b2,3 +307,53,53,Ancestral,161.8787676,0,Infection naive,BNT162b2,2 +307,53,53,Alpha,90.6935144891519,0,Infection naive,BNT162b2,2 +307,53,53,Delta,40.5989332000001,0,Infection naive,BNT162b2,2 +308,84,53,Ancestral,977.903792999997,0,Infection naive,BNT162b2,2 +308,159,53,Ancestral,145.2073292,0,Infection naive,BNT162b2,2 +308,84,53,Alpha,465.050150400001,0,Infection naive,BNT162b2,2 +308,159,53,Alpha,156.5759152,0,Infection naive,BNT162b2,2 +308,84,53,Delta,355.0240073,0,Infection naive,BNT162b2,2 +308,159,53,Delta,99.8730697099998,0,Infection naive,BNT162b2,2 +309,52,44,Ancestral,2560,1,Infection naive,BNT162b2,2 +309,52,44,Alpha,532.256315000001,0,Infection naive,BNT162b2,2 +309,52,44,Delta,649.426115799998,0,Infection naive,BNT162b2,2 +310,81,48,Ancestral,2560,1,Infection naive,BNT162b2,2 +310,151,48,Ancestral,1058.169346,0,Infection naive,BNT162b2,2 +310,319,48,Ancestral,695.377960810212,0,Infection naive,BNT162b2,2 +310,353,48,Ancestral,607.57498998905,0,Infection naive,BNT162b2,2 +310,531,48,Ancestral,936.793747699999,0,Infection naive,BNT162b2,2 +310,81,48,Alpha,1353.690964,0,Infection naive,BNT162b2,2 +310,151,48,Alpha,725.257808200001,0,Infection naive,BNT162b2,2 +310,319,48,Alpha,1007.4846472003,0,Infection naive,BNT162b2,2 +310,353,48,Alpha,941.733283569616,0,Infection naive,BNT162b2,2 +310,531,48,Alpha,695.377960799999,0,Infection naive,BNT162b2,2 +310,81,48,Delta,602.272908000001,0,Infection naive,BNT162b2,2 +310,151,48,Delta,456.9689249,0,Infection naive,BNT162b2,2 +310,319,48,Delta,371.905407571902,0,Infection naive,BNT162b2,2 +310,353,48,Delta,416.060483272753,0,Infection naive,BNT162b2,2 +311,88,62,Ancestral,357.522163954259,0,Infection naive,AZD1222,3 +311,88,62,Alpha,515.272006078912,0,Infection naive,AZD1222,3 +311,88,62,Delta,301.616915337642,0,Infection naive,AZD1222,3 +312,84,53,Ancestral,888.801174300003,0,Infection naive,BNT162b2,2 +312,168,53,Ancestral,67.2034947699999,0,Infection naive,BNT162b2,2 +312,84,53,Alpha,291.225534900001,0,Infection naive,BNT162b2,2 +312,168,53,Alpha,114.8081484,0,Infection naive,BNT162b2,2 +312,238,53,Alpha,109.500798270708,0,Infection naive,BNT162b2,2 +312,84,53,Delta,124.8865576,0,Infection naive,BNT162b2,2 +312,168,53,Delta,44.3957646400001,0,Infection naive,BNT162b2,2 +312,238,53,Delta,47.1222645000002,0,Infection naive,BNT162b2,2 +313,45,39,Ancestral,2560,1,Infection naive,BNT162b2,2 +313,67,39,Ancestral,1347.771441,0,Infection naive,BNT162b2,2 +313,109,39,Ancestral,775.894958500002,0,Infection naive,BNT162b2,2 +313,193,39,Ancestral,339.801208099999,0,Infection naive,BNT162b2,2 +313,45,39,Alpha,1001.32219871309,0,Infection naive,BNT162b2,2 +313,67,39,Alpha,2433.20351999999,0,Infection naive,BNT162b2,2 +313,109,39,Alpha,2560,1,Infection naive,BNT162b2,2 +313,193,39,Alpha,199.953035,0,Infection naive,BNT162b2,2 +313,45,39,Delta,2560,1,Infection naive,BNT162b2,2 +313,67,39,Delta,812.076691199999,0,Infection naive,BNT162b2,2 +313,109,39,Delta,516.628685899999,0,Infection naive,BNT162b2,2 +313,193,39,Delta,184.4623099,0,Infection naive,BNT162b2,2 +314,124,90,Ancestral,203.667521299999,0,Infection naive,AZD1222,2 +314,124,90,Alpha,40.4568437,0,Infection naive,AZD1222,2 +314,124,90,Delta,61.4560919600002,0,Infection naive,AZD1222,2 +315,80,47,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +315,151,47,Ancestral,2223.160726,0,Previously infected (Pre-Omicron),BNT162b2,3 +315,305,47,Ancestral,2286.398127,0,Previously infected (Pre-Omicron),BNT162b2,3 +315,80,47,Alpha,2098.20327900001,0,Previously infected (Pre-Omicron),BNT162b2,3 +315,151,47,Alpha,1820.46058,0,Previously infected (Pre-Omicron),BNT162b2,3 +315,305,47,Alpha,983.060094309901,0,Previously infected (Pre-Omicron),BNT162b2,3 +315,80,47,Delta,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +315,151,47,Delta,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +315,305,47,Delta,1148.037806,0,Previously infected (Pre-Omicron),BNT162b2,3 +316,84,42,Ancestral,460.5879509,0,Infection naive,BNT162b2,2 +316,151,42,Ancestral,191.0442123,0,Infection naive,BNT162b2,2 +316,84,42,Alpha,298.199674599999,0,Infection naive,BNT162b2,2 +316,151,42,Alpha,210.3807757,0,Infection naive,BNT162b2,2 +316,84,42,Delta,389.248195900001,0,Infection naive,BNT162b2,2 +316,151,42,Delta,164.5971664,0,Infection naive,BNT162b2,2 +317,17,-31,Ancestral,109.213246450387,0,Infection naive,"",1 +317,17,-31,Alpha,5,-1,Infection naive,"",1 +317,17,-31,Delta,5,-1,Infection naive,"",1 +318,84,53,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +318,151,53,Ancestral,382.484188999999,0,Previously infected (Pre-Omicron),BNT162b2,3 +318,84,53,Alpha,508.541860499999,0,Previously infected (Pre-Omicron),BNT162b2,3 +318,151,53,Alpha,357.522164,0,Previously infected (Pre-Omicron),BNT162b2,3 +318,84,53,Delta,351.925844300001,0,Previously infected (Pre-Omicron),BNT162b2,3 +318,151,53,Delta,218.269778,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,35,31,Ancestral,501.89961977487,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,77,31,Ancestral,1047.097936,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,35,31,Alpha,403.137177574692,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,77,31,Alpha,677.331448299999,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,35,31,Delta,190.542525447934,0,Previously infected (Pre-Omicron),BNT162b2,3 +319,77,31,Delta,374.194229200001,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,21,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +320,42,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +320,105,-18,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +320,21,-18,Alpha,792.389433300002,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,42,-18,Alpha,937.615200800003,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,105,-18,Alpha,1127.099904,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,21,-18,Delta,557.565115799999,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,42,-18,Delta,681.4999568,0,Previously infected (Pre-Omicron),BNT162b2,3 +320,105,-18,Delta,651.706981500002,0,Previously infected (Pre-Omicron),BNT162b2,3 +321,80,54,Ancestral,430.528648299999,0,Infection naive,BNT162b2,2 +321,160,54,Ancestral,288.937258,0,Infection naive,BNT162b2,2 +321,243,54,Ancestral,229.854131600001,0,Infection naive,BNT162b2,2 +321,80,54,Alpha,311.2858018,0,Infection naive,BNT162b2,2 +321,160,54,Alpha,130.9396338,0,Infection naive,BNT162b2,2 +321,243,54,Alpha,145.334658200302,0,Infection naive,BNT162b2,2 +321,80,54,Delta,215.230150699999,0,Infection naive,BNT162b2,2 +321,160,54,Delta,170.320899100001,0,Infection naive,BNT162b2,2 +321,243,54,Delta,70.7082208599999,0,Infection naive,BNT162b2,2 +322,81,50,Ancestral,1167.316583,0,Infection naive,BNT162b2,2 +322,151,50,Ancestral,174.3996683,0,Infection naive,BNT162b2,2 +322,307,50,Ancestral,110.5616476,0,Infection naive,BNT162b2,2 +322,81,50,Alpha,1489.398942,0,Infection naive,BNT162b2,2 +322,151,50,Alpha,417.887855000001,0,Infection naive,BNT162b2,2 +322,307,50,Alpha,128.101649069628,0,Infection naive,BNT162b2,2 +322,81,50,Delta,1059.09723,0,Infection naive,BNT162b2,2 +322,151,50,Delta,292.761111899999,0,Infection naive,BNT162b2,2 +322,307,50,Delta,71.2057652699998,0,Infection naive,BNT162b2,2 +323,4,-33,Ancestral,114.4063389926,0,Infection naive,BNT162b2,1 +323,25,-33,Ancestral,138.737678205393,0,Infection naive,BNT162b2,1 +323,4,-33,Alpha,107.033623347396,0,Infection naive,BNT162b2,1 +323,25,-33,Alpha,60.0187886685244,0,Infection naive,BNT162b2,1 +323,4,-33,Delta,5,-1,Infection naive,BNT162b2,1 +323,25,-33,Delta,5,-1,Infection naive,BNT162b2,1 +324,131,97,Ancestral,461.800650900001,0,Previously infected (Pre-Omicron),AZD1222,3 +324,168,97,Ancestral,388.907172100001,0,Previously infected (Pre-Omicron),AZD1222,3 +324,131,97,Alpha,817.074464,0,Previously infected (Pre-Omicron),AZD1222,3 +324,168,97,Alpha,261.6913767,0,Previously infected (Pre-Omicron),AZD1222,3 +324,131,97,Delta,325.5163233,0,Previously infected (Pre-Omicron),AZD1222,3 +324,168,97,Delta,229.0496805,0,Previously infected (Pre-Omicron),AZD1222,3 +325,80,59,Ancestral,2560,1,Previously infected (Pre-Omicron),BNT162b2,3 +325,150,59,Ancestral,303.4731597,0,Previously infected (Pre-Omicron),BNT162b2,3 +325,80,59,Alpha,1672.082267,0,Previously infected (Pre-Omicron),BNT162b2,3 +325,150,59,Alpha,812.788782800003,0,Previously infected (Pre-Omicron),BNT162b2,3 +325,80,59,Delta,1011.023059,0,Previously infected (Pre-Omicron),BNT162b2,3 +325,150,59,Delta,651.1360152,0,Previously infected (Pre-Omicron),BNT162b2,3 +326,96,48,Ancestral,804.284739699998,0,Infection naive,BNT162b2,2 +326,160,48,Ancestral,487.1632965,0,Infection naive,BNT162b2,2 +326,96,48,Alpha,553.184101099999,0,Infection naive,BNT162b2,2 +326,160,48,Alpha,465.050150400001,0,Infection naive,BNT162b2,2 +326,96,48,Delta,380.144660400001,0,Infection naive,BNT162b2,2 +326,160,48,Delta,245.686998900001,0,Infection naive,BNT162b2,2 +327,133,97,Ancestral,278.250104599999,0,Infection naive,AZD1222,2 +327,160,97,Ancestral,220.7710563,0,Infection naive,AZD1222,2 +327,133,97,Alpha,206.182101900001,0,Infection naive,AZD1222,2 +327,160,97,Alpha,155.6181924,0,Infection naive,AZD1222,2 +327,133,97,Delta,41.4256862299999,0,Infection naive,AZD1222,2 +327,160,97,Delta,68.9940342600001,0,Infection naive,AZD1222,2 +328,76,53,Ancestral,633.1268378,0,Infection naive,BNT162b2,2 +328,150,53,Ancestral,128.5515581,0,Infection naive,BNT162b2,2 +328,76,53,Alpha,719.559164000002,0,Infection naive,BNT162b2,2 +328,150,53,Alpha,280.2080351,0,Infection naive,BNT162b2,2 +328,242,53,Alpha,212.605220770371,0,Infection naive,BNT162b2,2 +328,76,53,Delta,348.243716,0,Infection naive,BNT162b2,2 +328,150,53,Delta,155.8912282,0,Infection naive,BNT162b2,2 +328,242,53,Delta,193.7422693,0,Infection naive,BNT162b2,2 +329,67,38,Ancestral,494.043349599999,0,Previously infected (Pre-Omicron),BNT162b2,3 +329,151,38,Ancestral,388.226020499999,0,Previously infected (Pre-Omicron),BNT162b2,3 +329,67,38,Alpha,527.149266099999,0,Previously infected (Pre-Omicron),BNT162b2,3 +329,151,38,Alpha,155.0735547,0,Previously infected (Pre-Omicron),BNT162b2,3 +329,67,38,Delta,324.3770705,0,Previously infected (Pre-Omicron),BNT162b2,3 +329,151,38,Delta,190.3755894,0,Previously infected (Pre-Omicron),BNT162b2,3 +330,80,53,Ancestral,604.388165800002,0,Infection naive,BNT162b2,2 +330,151,53,Ancestral,320.420993300001,0,Infection naive,BNT162b2,2 +330,80,53,Alpha,878.731289700001,0,Infection naive,BNT162b2,2 +330,151,53,Alpha,246.982459799999,0,Infection naive,BNT162b2,2 +330,80,53,Delta,597.540606,0,Infection naive,BNT162b2,2 +330,151,53,Delta,212.6052208,0,Infection naive,BNT162b2,2 +331,131,81,Ancestral,183.6556791,0,Infection naive,AZD1222,2 +331,131,81,Alpha,45.7387031300002,0,Infection naive,AZD1222,2 +331,131,81,Delta,40.3152515,0,Infection naive,AZD1222,2 +332,7,-13,Ancestral,165.61014864394,0,Infection naive,BNT162b2,1 +332,28,-13,Ancestral,154.260170083228,0,Infection naive,BNT162b2,1 +332,7,-13,Alpha,176.243669879066,0,Infection naive,BNT162b2,1 +332,28,-13,Alpha,155.891228179604,0,Infection naive,BNT162b2,1 +332,7,-13,Delta,111.047243401498,0,Infection naive,BNT162b2,1 +332,28,-13,Delta,68.3919488710283,0,Infection naive,BNT162b2,1 +333,84,54,Ancestral,438.1422931,0,Infection naive,BNT162b2,2 +333,151,54,Ancestral,163.733829,0,Infection naive,BNT162b2,2 +333,236,54,Ancestral,103.5273976,0,Infection naive,BNT162b2,2 +333,84,54,Alpha,580.5047439,0,Infection naive,BNT162b2,2 +333,151,54,Alpha,165.900715500001,0,Infection naive,BNT162b2,2 +333,236,54,Alpha,151.181523110332,0,Infection naive,BNT162b2,2 +333,84,54,Delta,171.2189689,0,Infection naive,BNT162b2,2 +333,151,54,Delta,84.9233322799998,0,Infection naive,BNT162b2,2 +333,236,54,Delta,44.4346942700001,0,Infection naive,BNT162b2,2 +334,74,74,Ancestral,88.1851052684112,0,Infection naive,AZD1222,2 +334,168,74,Ancestral,5,-1,Infection naive,AZD1222,2 +334,74,74,Alpha,5,-1,Infection naive,AZD1222,2 +334,74,74,Delta,5,-1,Infection naive,AZD1222,2 +335,131,96,Ancestral,136.805615775511,0,Infection naive,AZD1222,1 +335,151,96,Ancestral,120.689672339818,0,Infection naive,AZD1222,1 +335,131,96,Alpha,70.0297688893001,0,Infection naive,AZD1222,1 +335,151,96,Alpha,50.9007153836499,0,Infection naive,AZD1222,1 +335,131,96,Delta,5,-1,Infection naive,AZD1222,1 +335,151,96,Delta,5,-1,Infection naive,AZD1222,1 diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index 443dac8..d9aeac3 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -2,9 +2,9 @@ title: "A guide to model input and output data" output: rmarkdown::html_vignette vignette: > - %\VignetteIndexEntry{A guide to model input and output data} - %\VignetteEngine{knitr::rmarkdown} - %\VignetteEncoding{UTF-8} +%\VignetteIndexEntry{A guide to model input and output data} +%\VignetteEngine{knitr::rmarkdown} +%\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} @@ -18,28 +18,26 @@ knitr::opts_chunk$set( The model requires a data table containing the following columns: -### pid -A unique numeric id to identify a person across observations - -### date -The date of the observation - -### last_exp_date -The last date on which the person was exposed - -### titre_type -The name of the titre - -### value -The value of the titre - -### censored -Whether this observation should be censored: -1 for lower, 1 for upper, 0 for none +| name | type | description | +|--------------|-----------------|---------------------------------------------------------------------------------------------------| +| pid | numeric | Unique number to identify a person across observations | +| day | integer or date | The day of the observation. Can be a date or an integer representing a relative day of study | +| last_exp_day | integer or date | The most recent day on which the person was exposed. Must be of the same type as the 'day' column | +| titre_type | character | Name of the titre or biomarker | +| value | numeric | Titre value | +| censored | -1, 0 or 1 | Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none | It can also contain further columns for any covariates to be included in the model. The data files installed with this package have additional columns infection_history, last_vax_type, and exp_num. The model also accepts a covariate formula to define the regression model. The variables in the formula must correspond to column names in the dataset. Note that all variables will be treated as **categorical variables**; that is, converted to factors regardless of their input type. +## Example + +```{r} +dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) +head(dat) +``` + # Ouput data After fitting a model, a [CmdStanMCMC](https://mc-stan.org/cmdstanr/reference/CmdStanMCMC.html) object is returned. This means @@ -60,17 +58,40 @@ See the documentation for this function [here](../reference/biokinetics.html#met There are 2 different output formats depending on whether the provided `summarise` argument is `TRUE` or `FALSE`. * `summarise = TRUE` - Returned columns are: - * t: - * p: - * k: - * me: - * lo - * hi - * titre_type + Returned columns are + + | name | type | description | + |---------------------|------------|-----------------------------------------------------------------------------------------------| + | time_since_last_exp | integer | Number of days since last exposure | + | me | numeric | Median titre value | + | lo | numeric | Titre value at the 0.025 quantile | + | hi | numeric | Titre value at the 0.975 quantile | + | titre_type | character | Name of the titre or biomarker | + | censored | -1, 0 or 1 | Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none | - There will also be a column for each covariate in the hierarchical model. +There will also be a column for each covariate in the regression model. * `summarise = FALSE` - Returned columns are t, p, k, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop, beta_t0, beta_tp, beta_ts, beta_m1, beta_m2, beta_m3, mu .draw, titre_type and a column for each covariate in the hierarchical model. + Returned columns are + + | name | type | description | + |---------------------|---------|------------------------------------| + | time_since_last_exp | integer | Number of days since last exposure | + | t0_pop | numeric | | + | tp_pop | numeric | | + | ts_pop | numeric | | + | m1_pop | numeric | | + | m2_pop | numeric | | + | m3_pop | numeric | | + | beta_t0 | numeric | | + | beta_tp | numeric | | + | beta_ts | numeric | | + | beta_m1 | numeric | | + | beta_m2 | numeric | | + | beta_t3 | numeric | | + | mu | numeric | Titre value | + | .draw | integer | Draw number | + | titre_type | numeric | Name of the titre or biomarker | + +There will also be column for each covariate in the hierarchical model. From a00da6eeccdc1ea465dfcf625e769f462dd9f0a7 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:15:52 +0100 Subject: [PATCH 02/11] update snapshots --- tests/testthat/_snaps/snapshots.md | 52 ++++++++--------- tests/testthat/_snaps/snapshots.new.md | 81 -------------------------- 2 files changed, 26 insertions(+), 107 deletions(-) delete mode 100644 tests/testthat/_snaps/snapshots.new.md diff --git a/tests/testthat/_snaps/snapshots.md b/tests/testthat/_snaps/snapshots.md index 3c4480e..ce37820 100644 --- a/tests/testthat/_snaps/snapshots.md +++ b/tests/testthat/_snaps/snapshots.md @@ -33,19 +33,19 @@ Code trajectories Output - t me lo hi titre_type - - 1: 0 75.60473 57.18538 98.67432 Ancestral - 2: 1 93.45106 73.95371 119.73536 Ancestral - 3: 2 115.78921 93.98541 144.80589 Ancestral - 4: 3 143.32611 116.92203 178.46907 Ancestral - 5: 4 178.27950 146.07233 220.82064 Ancestral - --- - 902: 146 162.44845 128.80162 200.22728 Delta - 903: 147 161.79766 128.30153 199.51119 Delta - 904: 148 161.15433 127.80338 198.86864 Delta - 905: 149 160.66958 127.30716 198.22817 Delta - 906: 150 159.99208 126.81288 197.58975 Delta + time_since_last_exp me lo hi titre_type + + 1: 0 121.1892 94.45425 154.0367 Alpha + 2: 1 150.7446 121.39549 186.0631 Alpha + 3: 2 188.0531 155.65597 228.6746 Alpha + 4: 3 233.8627 196.06447 281.9184 Alpha + 5: 4 291.1750 244.87488 347.7999 Alpha + --- + 902: 146 162.4485 128.80162 200.2273 Delta + 903: 147 161.7977 128.30153 199.5112 Delta + 904: 148 161.1543 127.80338 198.8686 Delta + 905: 149 160.6696 127.30716 198.2282 Delta + 906: 150 159.9921 126.81288 197.5898 Delta infection_history 1: Infection naive @@ -65,17 +65,17 @@ Code trajectories Output - calendar_day titre_type me lo hi time_shift - - 1: 2021-03-08 Ancestral 537.64994 427.22113 657.8683 0 - 2: 2021-03-09 Ancestral 522.51435 421.14547 653.5493 0 - 3: 2021-03-10 Ancestral 542.12465 439.50193 668.6812 0 - 4: 2021-03-11 Ancestral 522.11912 432.77731 643.5820 0 - 5: 2021-03-12 Ancestral 526.98594 421.46465 637.5343 0 - --- - 1775: 2022-08-07 Delta 84.55922 30.75784 317.8574 0 - 1776: 2022-08-08 Delta 86.74586 29.61217 322.3420 0 - 1777: 2022-08-09 Delta 86.13082 31.87980 319.2163 0 - 1778: 2022-08-10 Delta 84.68752 28.99385 312.2929 0 - 1779: 2022-08-11 Delta 84.58911 30.75438 320.1563 0 + calendar_day titre_type me lo hi time_shift + + 1: 2021-03-08 Alpha 1179.41596 898.59408 1592.5041 0 + 2: 2021-03-09 Alpha 1158.69205 865.99919 1558.7359 0 + 3: 2021-03-10 Alpha 1208.48440 953.30901 1520.2822 0 + 4: 2021-03-11 Alpha 1154.03970 900.55636 1490.7134 0 + 5: 2021-03-12 Alpha 1166.98651 885.90001 1506.8642 0 + --- + 1775: 2022-08-07 Delta 82.89897 31.27422 308.8199 0 + 1776: 2022-08-08 Delta 84.04324 30.86336 312.8336 0 + 1777: 2022-08-09 Delta 84.28422 30.20377 319.3140 0 + 1778: 2022-08-10 Delta 86.52412 29.56398 320.8826 0 + 1779: 2022-08-11 Delta 86.69664 31.20098 317.9618 0 diff --git a/tests/testthat/_snaps/snapshots.new.md b/tests/testthat/_snaps/snapshots.new.md deleted file mode 100644 index ce37820..0000000 --- a/tests/testthat/_snaps/snapshots.new.md +++ /dev/null @@ -1,81 +0,0 @@ -# Model fits are the same - - Code - delta - Output - variable mean median sd mad q5 q95 rhat ess_bulk - lp__ -1174.70 -1176.14 50.78 53.93 -1251.74 -1090.28 1.08 34 - t0_pop[1] 4.13 4.13 0.28 0.27 3.66 4.55 1.02 201 - t0_pop[2] 4.80 4.83 0.26 0.27 4.37 5.22 1.02 173 - t0_pop[3] 3.52 3.51 0.28 0.27 3.09 3.99 1.02 189 - tp_pop[1] 9.52 9.53 0.65 0.66 8.54 10.56 1.01 200 - tp_pop[2] 10.72 10.74 0.63 0.59 9.68 11.70 1.02 215 - tp_pop[3] 8.91 8.91 0.73 0.75 7.71 10.11 1.00 253 - ts_pop_delta[1] 52.70 52.57 2.56 2.32 48.91 57.15 1.00 349 - ts_pop_delta[2] 61.50 61.35 2.65 2.72 57.32 65.69 1.00 327 - ts_pop_delta[3] 50.15 50.21 2.61 2.66 45.77 54.31 1.00 329 - ess_tail - 111 - 340 - 301 - 264 - 247 - 199 - 368 - 403 - 360 - 331 - - # showing 10 of 10103 rows (change via 'max_rows' argument or 'cmdstanr_max_rows' option) - -# Population trajectories are the same - - Code - trajectories - Output - time_since_last_exp me lo hi titre_type - - 1: 0 121.1892 94.45425 154.0367 Alpha - 2: 1 150.7446 121.39549 186.0631 Alpha - 3: 2 188.0531 155.65597 228.6746 Alpha - 4: 3 233.8627 196.06447 281.9184 Alpha - 5: 4 291.1750 244.87488 347.7999 Alpha - --- - 902: 146 162.4485 128.80162 200.2273 Delta - 903: 147 161.7977 128.30153 199.5112 Delta - 904: 148 161.1543 127.80338 198.8686 Delta - 905: 149 160.6696 127.30716 198.2282 Delta - 906: 150 159.9921 126.81288 197.5898 Delta - infection_history - - 1: Infection naive - 2: Infection naive - 3: Infection naive - 4: Infection naive - 5: Infection naive - --- - 902: Previously infected (Pre-Omicron) - 903: Previously infected (Pre-Omicron) - 904: Previously infected (Pre-Omicron) - 905: Previously infected (Pre-Omicron) - 906: Previously infected (Pre-Omicron) - -# Individual trajectories are the same - - Code - trajectories - Output - calendar_day titre_type me lo hi time_shift - - 1: 2021-03-08 Alpha 1179.41596 898.59408 1592.5041 0 - 2: 2021-03-09 Alpha 1158.69205 865.99919 1558.7359 0 - 3: 2021-03-10 Alpha 1208.48440 953.30901 1520.2822 0 - 4: 2021-03-11 Alpha 1154.03970 900.55636 1490.7134 0 - 5: 2021-03-12 Alpha 1166.98651 885.90001 1506.8642 0 - --- - 1775: 2022-08-07 Delta 82.89897 31.27422 308.8199 0 - 1776: 2022-08-08 Delta 84.04324 30.86336 312.8336 0 - 1777: 2022-08-09 Delta 84.28422 30.20377 319.3140 0 - 1778: 2022-08-10 Delta 86.52412 29.56398 320.8826 0 - 1779: 2022-08-11 Delta 86.69664 31.20098 317.9618 0 - From f01e8febc1efdc0f62468df90458a99843ff5898 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:25:28 +0100 Subject: [PATCH 03/11] fix vignette syntax --- tests/testthat/test-relative-dates.R | 4 ++-- vignettes/data.Rmd | 6 +++--- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/tests/testthat/test-relative-dates.R b/tests/testthat/test-relative-dates.R index 4e46099..cb844ed 100644 --- a/tests/testthat/test-relative-dates.R +++ b/tests/testthat/test-relative-dates.R @@ -1,7 +1,7 @@ test_that("Using relative and absolute dates gives the same answer", { # these take a while, so don't run on CI skip_on_ci() - dat_absolute <- data.table::fread(test_path("testdata", "delta_full_relative.rds")) + dat_absolute <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) mod_absolute <- biokinetics$new(data = dat_absolute, covariate_formula = ~0 + infection_history) delta_absolute <- mod_absolute$fit(parallel_chains = 4, iter_warmup = 50, @@ -11,7 +11,7 @@ test_that("Using relative and absolute dates gives the same answer", { set.seed(1) trajectories_absolute <- mod_absolute$simulate_individual_trajectories() - dat_relative <- data.table::fread(system.file("delta_full_relative.rds", package = "epikinetics")) + dat_relative <- data.table::fread(test_path("testdata", "delta_full_relative.rds")) mod_relative <- biokinetics$new(data = dat_relative, covariate_formula = ~0 + infection_history) delta_relative <- mod_relative$fit(parallel_chains = 4, iter_warmup = 50, diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index d9aeac3..30f0dd8 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -2,9 +2,9 @@ title: "A guide to model input and output data" output: rmarkdown::html_vignette vignette: > -%\VignetteIndexEntry{A guide to model input and output data} -%\VignetteEngine{knitr::rmarkdown} -%\VignetteEncoding{UTF-8} + %\VignetteIndexEntry{A guide to model input and output data} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} From a156adde0e7194b0f651c815dad22b2ec5df835e Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:37:46 +0100 Subject: [PATCH 04/11] test relative and absolute dates give same answers --- tests/testthat/test-relative-dates.R | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/tests/testthat/test-relative-dates.R b/tests/testthat/test-relative-dates.R index cb844ed..b4710a1 100644 --- a/tests/testthat/test-relative-dates.R +++ b/tests/testthat/test-relative-dates.R @@ -18,11 +18,12 @@ test_that("Using relative and absolute dates gives the same answer", { iter_sampling = 100, seed = 100) - min_date <- min(dat_absolute$day) - set.seed(1) trajectories_relative <- mod_relative$simulate_individual_trajectories() - trajectories_relative$calendar_day <- as.integer(mindate + trajectories_relative$calendar_day, units = "days") + + # convert relative days to absolute + min_date <- min(dat_absolute$day) + trajectories_relative$calendar_day <- min_date + trajectories_relative$calendar_day expect_equal(trajectories_relative, trajectories_absolute) }) From d86065958de0a922c0e2ad7f09f8f1b0f4215089 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:40:56 +0100 Subject: [PATCH 05/11] update vignette and all data files --- inst/ba2_full.rds | 2 +- inst/xbb_full.rds | 2 +- vignettes/biokinetics.Rmd | 18 +++++++++--------- 3 files changed, 11 insertions(+), 11 deletions(-) diff --git a/inst/ba2_full.rds b/inst/ba2_full.rds index 6937cfd..0cc420b 100644 --- a/inst/ba2_full.rds +++ b/inst/ba2_full.rds @@ -1,4 +1,4 @@ -pid,date,last_exp_date,titre_type,value,censored,infection_history,last_vax_type,exp_num +pid,day,last_exp_day,titre_type,value,censored,infection_history,last_vax_type,exp_num 1,2022-01-31,2021-12-26,Delta,2560,1,Infection naive,BNT162b2,5 1,2022-01-31,2021-12-26,BA.1,1841.32228,0,Infection naive,BNT162b2,5 1,2022-01-31,2021-12-26,BA.2,786.8526775,0,Infection naive,BNT162b2,5 diff --git a/inst/xbb_full.rds b/inst/xbb_full.rds index 188d6bb..c6c0fc3 100644 --- a/inst/xbb_full.rds +++ b/inst/xbb_full.rds @@ -1,4 +1,4 @@ -pid,date,last_exp_date,titre_type,value,censored,infection_history,last_vax_type,exp_num +pid,day,last_exp_day,titre_type,value,censored,infection_history,last_vax_type,exp_num 1,2022-12-07,2022-11-16,BA.5,2560,1,Previously infected (Omicron),BNT162b2+BA1,7 1,2022-12-07,2022-11-16,BQ.1.1,2560,1,Previously infected (Omicron),BNT162b2+BA1,7 1,2022-12-07,2022-11-16,XBB,2560,1,Previously infected (Omicron),BNT162b2+BA1,7 diff --git a/vignettes/biokinetics.Rmd b/vignettes/biokinetics.Rmd index 290e115..b5679eb 100644 --- a/vignettes/biokinetics.Rmd +++ b/vignettes/biokinetics.Rmd @@ -71,10 +71,10 @@ plot_data[, titre_type := forcats::fct_relevel( c("Ancestral", "Alpha", "Delta"))] ggplot(data = plot_data) + - geom_line(aes(x = t, + geom_line(aes(x = time_since_last_exp, y = me, colour = titre_type)) + - geom_ribbon(aes(x = t, + geom_ribbon(aes(x = time_since_last_exp, ymin = lo, ymax = hi, fill = titre_type), alpha = 0.65) + @@ -173,8 +173,8 @@ res$wave <- "Delta" dat$wave <- "Delta" plot_data <- merge( res, dat[, .( - min_date = min(date), max_date = max(date)), by = wave])[ - , .SD[calendar_date >= min_date & calendar_date <= date_ba2], by = wave] + min_date = min(day), max_date = max(day)), by = wave])[ + , .SD[calendar_day >= min_date & calendar_day <= date_ba2], by = wave] plot_data[, titre_type := forcats::fct_relevel( titre_type, @@ -182,14 +182,14 @@ plot_data[, titre_type := forcats::fct_relevel( ggplot() + geom_line( data = plot_data, - aes(x = calendar_date, + aes(x = calendar_day, y = me, group = interaction(titre_type, wave), colour = titre_type), alpha = 0.2) + geom_ribbon( data = plot_data, - aes(x = calendar_date, + aes(x = calendar_day, ymin = lo, ymax = hi, group = interaction(titre_type, wave) @@ -205,10 +205,10 @@ ggplot() + geom_line( values = custom_palette) + scale_x_date( date_labels = "%b %Y", - limits = c(min(dat$date), date_ba2)) + + limits = c(min(dat$day), date_ba2)) + geom_smooth( data = plot_data, - aes(x = calendar_date, + aes(x = calendar_day, y = me, fill = titre_type, colour = titre_type, @@ -236,7 +236,7 @@ combined_data <- data.table::data.table(data.table::rbindlist(results_list)) Plotting the median values: ```{r} -plot_data <- combined_data[calendar_date == date_delta] +plot_data <- combined_data[calendar_day == date_delta] plot_data <- plot_data[, titre_type := forcats::fct_relevel( titre_type, c("Ancestral", "Alpha", "Delta"))] From 2408b43915848196e3e2438d434bffbd4b32c2ca Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 7 Oct 2024 22:41:54 +0100 Subject: [PATCH 06/11] udpate docs --- man/biokinetics.Rd | 14 ++++---------- vignettes/data.Rmd | 1 - 2 files changed, 4 insertions(+), 11 deletions(-) diff --git a/man/biokinetics.Rd b/man/biokinetics.Rd index c7d16ed..ce378fe 100644 --- a/man/biokinetics.Rd +++ b/man/biokinetics.Rd @@ -31,8 +31,7 @@ Initialise the kinetics model. data = NULL, file_path = NULL, covariate_formula = ~0, - preds_sd = 0.25, - time_type = "relative" + preds_sd = 0.25 )}\if{html}{\out{}} } @@ -50,8 +49,6 @@ for required columns: \code{vignette("data", package = "epikinetics")}.} will be treated as categorical variables. Default ~0.} \item{\code{preds_sd}}{Standard deviation of predictor coefficients. Default 0.25.} - -\item{\code{time_type}}{One of 'relative' or 'absolute'. Default 'relative'.} } \if{html}{\out{}} } @@ -153,7 +150,6 @@ A data.table Process the model results into a data table of titre values over time. \subsection{Usage}{ \if{html}{\out{
}}\preformatted{biokinetics$simulate_population_trajectories( - time_type = "relative", t_max = 150, summarise = TRUE, n_draws = 2500 @@ -163,8 +159,6 @@ Process the model results into a data table of titre values over time. \subsection{Arguments}{ \if{html}{\out{
}} \describe{ -\item{\code{time_type}}{One of 'relative' or 'absolute'. Default 'relative'.} - \item{\code{t_max}}{Integer. Maximum number of time points to include.} \item{\code{summarise}}{Boolean. Default TRUE. If TRUE, summarises over draws from posterior parameter distributions to @@ -176,9 +170,9 @@ draws from posterior parameter distributions.} \if{html}{\out{
}} } \subsection{Returns}{ -A data.table containing titre values at time points. If summarise = TRUE, columns are t, me, lo, hi, -titre_type, and a column for each covariate in the hierarchical model. If summarise = FALSE, columns are t, .draw -t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop, beta_t0, beta_tp, beta_ts, beta_m1, beta_m2, beta_m3, mu +A data.table containing titre values at time points. If summarise = TRUE, columns are time_since_last_exp, +me, lo, hi, titre_type, and a column for each covariate in the hierarchical model. If summarise = FALSE, columns are +time_since_last_exp, .draw, t0_pop, tp_pop, ts_pop, m1_pop, m2_pop, m3_pop, beta_t0, beta_tp, beta_ts, beta_m1, beta_m2, beta_m3, mu titre_type and a column for each covariate in the hierarchical model. See the data vignette for details: \code{vignette("data", package = "epikinetics")} } diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index 30f0dd8..92d8e4f 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -94,4 +94,3 @@ There will also be a column for each covariate in the regression model. | titre_type | numeric | Name of the titre or biomarker | There will also be column for each covariate in the hierarchical model. - From 1ad56b0ae705e8f5dfa7f185478035aec0a8e645 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 14 Oct 2024 12:57:49 +0100 Subject: [PATCH 07/11] add data merge utils --- NAMESPACE | 1 + R/biokinetics.R | 32 ++++++++++++++++++-- R/datetime-utils.R | 3 -- R/utils.R | 17 +++++++++++ R/validation.R | 3 +- man/add_exposure_data.Rd | 23 ++++++++++++++ tests/testthat/test-combine-data.R | 31 +++++++++++++++++++ tests/testthat/test-data.R | 42 +++++++++++++------------- tests/testthat/test-non-numeric-pids.R | 36 ++++++++++++++++++++++ tests/testthat/testdata/test_inf.csv | 4 +++ tests/testthat/testdata/test_sero.csv | 17 +++++++++++ vignettes/data.Rmd | 16 +++++----- 12 files changed, 188 insertions(+), 37 deletions(-) delete mode 100644 R/datetime-utils.R create mode 100644 man/add_exposure_data.Rd create mode 100644 tests/testthat/test-combine-data.R create mode 100644 tests/testthat/test-non-numeric-pids.R create mode 100644 tests/testthat/testdata/test_inf.csv create mode 100644 tests/testthat/testdata/test_sero.csv diff --git a/NAMESPACE b/NAMESPACE index 349881e..d7dad8b 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -1,5 +1,6 @@ # Generated by roxygen2: do not edit by hand +export(add_exposure_data) export(biokinetics) export(biokinetics_priors) export(convert_log_scale_inverse) diff --git a/R/biokinetics.R b/R/biokinetics.R index 08afb64..960c463 100644 --- a/R/biokinetics.R +++ b/R/biokinetics.R @@ -18,6 +18,7 @@ biokinetics <- R6::R6Class( all_formula_vars = NULL, design_matrix = NULL, covariate_lookup_table = NULL, + pid_lookup = NULL, check_fitted = function() { if (is.null(private$fitted)) { stop("Model has not been fitted yet. Call 'fit' before calling this function.") @@ -70,6 +71,12 @@ biokinetics <- R6::R6Class( private$design_matrix, private$all_formula_vars) }, + build_pid_lookup = function() { + pids <- unique(private$data$pid) + ids <- seq_along(pids) + private$pid_lookup <- ids + names(private$pid_lookup) <- pids + }, recover_covariate_names = function(dt) { # Declare variables to suppress notes when compiling package # https://github.com/Rdatatable/data.table/issues/850#issuecomment-259466153 @@ -162,7 +169,7 @@ biokinetics <- R6::R6Class( stan_data <- list( N = private$data[, .N], N_events = private$data[, data.table::uniqueN(pid)], - id = private$data[, pid], + id = private$data[, private$pid_lookup[pid]], value = private$data[, value], censored = private$data[, censored], titre_type = private$data[, titre_type_num], @@ -248,8 +255,12 @@ biokinetics <- R6::R6Class( private$data[, `:=`(titre_type_num = as.numeric(as.factor(titre_type)), obs_id = seq_len(.N), t_since_last_exp = as.integer(day - last_exp_day, units = "days"))] + if (!("censored" %in% colnames(private$data))) { + private$data$censored <- 0 + } private$construct_design_matrix() private$build_covariate_lookup_table() + private$build_pid_lookup() private$prepare_stan_data() logger::log_info("Retrieving compiled model") private$model <- instantiate::stan_package_model( @@ -328,8 +339,14 @@ biokinetics <- R6::R6Class( logger::log_info("Extracting parameters") dt_out <- private$extract_parameters(params, n_draws) - data.table::setcolorder(dt_out, c("n", "k", ".draw")) - data.table::setnames(dt_out, c("n", ".draw"), c("pid", "draw")) + data.table::setcolorder(dt_out, c("k", ".draw")) + data.table::setnames(dt_out, ".draw", "draw") + + dt_out[, pid := names(private$pid_lookup)[n]] + if (is.numeric(private$data$pid)) { + dt_out[, pid := as.numeric(pid)] + } + dt_out$n <- NULL if (human_readable_covariates) { logger::log_info("Recovering covariate names") @@ -464,6 +481,9 @@ biokinetics <- R6::R6Class( dt_params_ind_trim <- dt_params_ind[, .SD[draw %in% 1:n_draws], by = pid] + # convert original pid to numeric pid + dt_params_ind_trim[, pid := private$pid_lookup[pid]] + # Running the C++ code to simulate trajectories for each parameter sample # for each individual logger::log_info("Simulating individual trajectories") @@ -472,6 +492,12 @@ biokinetics <- R6::R6Class( dt_params_ind_traj <- data.table::setDT(convert_log_scale_inverse_cpp( dt_params_ind_traj, vars_to_transform = "mu")) + # convert numeric pid to original pid + dt_params_ind_traj[, pid := names(private$pid_lookup)[pid]] + if (is.numeric(private$data$pid)) { + dt_params_ind_traj[, pid := as.numeric(pid)] + } + logger::log_info("Recovering covariate names") dt_params_ind_traj <- private$recover_covariate_names(dt_params_ind_traj) diff --git a/R/datetime-utils.R b/R/datetime-utils.R deleted file mode 100644 index ab091eb..0000000 --- a/R/datetime-utils.R +++ /dev/null @@ -1,3 +0,0 @@ -combine_data <- function(dat_sero, dat_inf) { - -} diff --git a/R/utils.R b/R/utils.R index 9e911a1..90f6a3d 100644 --- a/R/utils.R +++ b/R/utils.R @@ -30,6 +30,23 @@ convert_log_scale_inverse <- function(dt_in, vars_to_transform) { dt_out } +#' @title Combine titre data and infection data into biokinetics input format. +#' +#' @description The biokinetics class requires a single data table with titre readings +#' and last exposure times for all individuals. If you have exposure times and titre readings for the same +#' set of individuals in separate files, this function will combine them into a single data.table. +#' @return A data.table with all columns required by the biokinetics model. +#' @param dat_sero data.table containing titre values in the format required by biokinetics. See data vignette: \code{vignette("data", package = "epikinetics")}. +#' @param dat_inf data.table containing exposure days and person ids corresponding to those in dat_sero. By default the exposure days are expected in a column called 'day'. +#' @param exposure_column. Default 'day'. The name of the column containing exposure days. These can be integers or dates. +#' @export +add_exposure_data <- function(dat_sero, dat_inf, exposure_column = 'day') { + validate_required_cols(dat_sero, required_cols = c("pid", "day", "titre_type", "value")) + validate_required_cols(dat_inf, required_cols = c("pid", exposure_column)) + dat_inf[, last_exp_day := max(get(exposure_column)), by = "pid"] + merge(dat_sero, dat_inf[, c("pid", "last_exp_day")], by = "pid", allow.cartesian=TRUE) +} + summarise_draws <- function(dt_in, column_name, by = by) { # Declare variables to suppress notes when compiling package # https://github.com/Rdatatable/data.table/issues/850#issuecomment-259466153 diff --git a/R/validation.R b/R/validation.R index b05cf2c..faa19ac 100644 --- a/R/validation.R +++ b/R/validation.R @@ -30,8 +30,7 @@ validate_formula_vars <- function(formula_vars, data) { } } -validate_required_cols <- function(dat) { - required_cols <- c("pid", "day", "last_exp_day", "titre_type", "value", "censored") +validate_required_cols <- function(dat, required_cols = c("pid", "day", "titre_type", "value", "last_exp_day")) { missing_cols <- required_cols[!(required_cols %in% colnames(dat))] if (length(missing_cols) > 0) { stop(paste("Missing required columns:", diff --git a/man/add_exposure_data.Rd b/man/add_exposure_data.Rd new file mode 100644 index 0000000..a2b744a --- /dev/null +++ b/man/add_exposure_data.Rd @@ -0,0 +1,23 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/utils.R +\name{add_exposure_data} +\alias{add_exposure_data} +\title{Combine titre data and infection data into biokinetics input format.} +\usage{ +add_exposure_data(dat_sero, dat_inf, exposure_column = "day") +} +\arguments{ +\item{dat_sero}{data.table containing titre values in the format required by biokinetics. See data vignette: \code{vignette("data", package = "epikinetics")}.} + +\item{dat_inf}{data.table containing exposure days and person ids corresponding to those in dat_sero. By default the exposure days are expected in a column called 'day'.} + +\item{exposure_column.}{Default 'day'. The name of the column containing exposure days. These can be integers or dates.} +} +\value{ +A data.table with all columns required by the biokinetics model. +} +\description{ +The biokinetics class requires a single data table with titre readings +and last exposure times for all individuals. If you have exposure times and titre readings for the same +set of individuals in separate files, this function will combine them into a single data.table. +} diff --git a/tests/testthat/test-combine-data.R b/tests/testthat/test-combine-data.R new file mode 100644 index 0000000..3f840fa --- /dev/null +++ b/tests/testthat/test-combine-data.R @@ -0,0 +1,31 @@ +test_that("Can combine sero and infection data", { + dat_sero <- data.table::fread(test_path("testdata/test_sero.csv")) + dat_inf <- data.table::fread(test_path("testdata/test_inf.csv")) + + res <- add_exposure_data(dat_sero, dat_inf) + expect_equal(names(res), c("pid", "day", "titre_type", "value", "Age", "last_exp_day")) + expect_true(all(res[pid == "01-A", "last_exp_day"] == 117)) + expect_true(all(res[pid == "02-B", "last_exp_day"] == 27)) +}) + +test_that("Can add exposure data with different day column", { + dat_sero <- data.table::fread(test_path("testdata/test_sero.csv")) + dat_inf <- data.table::fread(test_path("testdata/test_inf.csv")) + data.table::setnames(dat_inf, "day", "exposure_day") + + res <- add_exposure_data(dat_sero, dat_inf, exposure_column = "exposure_day") + expect_equal(names(res), c("pid", "day", "titre_type", "value", "Age", "last_exp_day")) + expect_true(all(res[pid == "01-A", "last_exp_day"] == 117)) + expect_true(all(res[pid == "02-B", "last_exp_day"] == 27)) +}) + +test_that("Required columns are validated", { + dat_sero <- data.table::fread(test_path("testdata/test_sero.csv")) + dat_inf <- data.table::fread(test_path("testdata/test_inf.csv")) + + expect_error(add_exposure_data(data.frame(bad = 1:10), dat_inf), + "Missing required columns: pid, day, titre_type, value") + + expect_error(add_exposure_data(dat_sero, data.frame(bad = 1:10)), + "Missing required columns: pid, day") +}) diff --git a/tests/testthat/test-data.R b/tests/testthat/test-data.R index d4e970c..bad0300 100644 --- a/tests/testthat/test-data.R +++ b/tests/testthat/test-data.R @@ -1,23 +1,3 @@ -mock_model <- function(name, package) { - list(sample = function(stan_dt, ...) stan_dt) -} - -local_mocked_bindings( - stan_package_model = mock_model, .package = "instantiate" -) - -test_that("Can construct stan data", { - dt <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) - mod <- biokinetics$new(data = dt, - priors = biokinetics_priors(), - covariate_formula = ~0 + infection_history, - preds_sd = 0.25) - # the fit function has been mocked above to return the stan inputs - stan_dt <- mod$fit() - expect_equal(stan_dt$N_events, 335) - expect_equal(unlist(stan_dt$id), unname(unlist(dt[, "pid"]))) -}) - test_that("Can initialise file path data", { expect_true(inherits(biokinetics$new(file_path = system.file("delta_full.rds", package = "epikinetics"), priors = biokinetics_priors()), "biokinetics")) @@ -29,7 +9,7 @@ test_that("Can provide data directly", { priors = biokinetics_priors()), "biokinetics")) }) -test_that("Can get stan data", { +test_that("Can construct stan data", { dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) priors <- biokinetics_priors(mu_values = c(1, 2, 3, 4, 5, 6), sigma_values = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6)) @@ -43,7 +23,27 @@ test_that("Can get stan data", { "mu_tp", "mu_ts", "mu_m1", "mu_m2", "mu_m3", "sigma_t0", "sigma_tp", "sigma_ts", "sigma_m1", "sigma_m2", "sigma_m3")) + expect_equal(stan_data$N_events, 335) expect_equal(stan_data$mu_t0, priors$mu_t0) expect_equal(stan_data$sigma_t0, priors$sigma_t0) expect_equal(stan_data$id, dat$pid) }) + +test_that("All data is assumed uncensored if no censored column provided", { + dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) + dat$censored <- NULL + mod <- biokinetics$new(data = dat) + stan_data <- mod$get_stan_data() + expect_equal(stan_data$uncens_idx, 1:nrow(dat)) + expect_equal(stan_data$cens_lo_idx, integer()) + expect_equal(stan_data$cens_hi_idx, integer()) +}) + +test_that("Can handle non-numeric pids", { + dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) + ids <- dat$pid + dat$pid <- paste0("ID-", dat$pid) + mod <- biokinetics$new(data = dat) + stan_data <- mod$get_stan_data() + expect_equal(stan_data$id, ids) +}) diff --git a/tests/testthat/test-non-numeric-pids.R b/tests/testthat/test-non-numeric-pids.R new file mode 100644 index 0000000..9089ae8 --- /dev/null +++ b/tests/testthat/test-non-numeric-pids.R @@ -0,0 +1,36 @@ +test_that("Using numeric and non-numeric pids gives the same answer", { + # these take a while, so don't run on CI + skip_on_ci() + dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) + mod <- biokinetics$new(data = dat, covariate_formula = ~0 + infection_history) + stan_data <- mod$get_stan_data() + + dat$pid <- paste0("ID", dat$pid) + mod_new <- biokinetics$new(data = dat, covariate_formula = ~0 + infection_history) + stan_data_new <- mod_new$get_stan_data() + + expect_equivalent(stan_data, stan_data_new) + + mod$fit(parallel_chains = 4, + iter_warmup = 50, + iter_sampling = 100, + seed = 100) + + mod_new$fit(parallel_chains = 4, + iter_warmup = 50, + iter_sampling = 100, + seed = 100) + + set.seed(1) + params <- mod$extract_individual_parameters(100) + + set.seed(1) + params_new <- mod_new$extract_individual_parameters(100) + + expect_equivalent(params, params_new) + + trajectories <- mod$simulate_individual_trajectories(summarise = FALSE) + trajectories_new <- mod_new$simulate_individual_trajectories(summarise = FALSE) + + expect_equivalent(trajectories[, -"pid"], trajectories_new[, -"pid"]) +}) diff --git a/tests/testthat/testdata/test_inf.csv b/tests/testthat/testdata/test_inf.csv new file mode 100644 index 0000000..582e69f --- /dev/null +++ b/tests/testthat/testdata/test_inf.csv @@ -0,0 +1,4 @@ +"pid","day","exposure" +"01-A",100,"delta" +"01-A",117,"delta" +"02-B",27,"delta" \ No newline at end of file diff --git a/tests/testthat/testdata/test_sero.csv b/tests/testthat/testdata/test_sero.csv new file mode 100644 index 0000000..8279812 --- /dev/null +++ b/tests/testthat/testdata/test_sero.csv @@ -0,0 +1,17 @@ +"pid","day","titre_type","value","Age" +"01-A",1,"sVNT",0.801026196911207,12 +"01-A",1,"IgA",1.78744206485982,12 +"01-A",1,"spike",0,12 +"01-A",1,"NCP",0.0149403497929365,12 +"01-A",182,"sVNT",1.96275325842584,12 +"01-A",182,"IgA",2.30404462059678,12 +"01-A",182,"spike",2.27587379896571,12 +"01-A",182,"NCP",2.29786020797958,12 +"02-B",1,"sVNT",0.801026196911207,32 +"02-B",1,"IgA",1.65947904814021,32 +"02-B",1,"spike",0.890014760709071,32 +"02-B",1,"NCP",0.948477860566987,32 +"02-B",183,"sVNT",1.62282409414993,32 +"02-B",183,"IgA",1.67839670919453,32 +"02-B",183,"spike",2.01321215832131,32 +"02-B",183,"NCP",1.36014887675169,32 diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index 92d8e4f..1c00e27 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -18,14 +18,14 @@ knitr::opts_chunk$set( The model requires a data table containing the following columns: -| name | type | description | -|--------------|-----------------|---------------------------------------------------------------------------------------------------| -| pid | numeric | Unique number to identify a person across observations | -| day | integer or date | The day of the observation. Can be a date or an integer representing a relative day of study | -| last_exp_day | integer or date | The most recent day on which the person was exposed. Must be of the same type as the 'day' column | -| titre_type | character | Name of the titre or biomarker | -| value | numeric | Titre value | -| censored | -1, 0 or 1 | Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none | +| name | type | description | required | +|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------| -------- | +| pid | numeric | Unique number to identify a person across observations | T| +| day | integer or date | The day of the observation. Can be a date or an integer representing a relative day of study | T| +| last_exp_day | integer or date | The most recent day on which the person was exposed. Must be of the same type as the 'day' column | T| +| titre_type | character | Name of the titre or biomarker | T| +| value | numeric | Titre value | T| +| censored | -1, 0 or 1 | Optional column. Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none. | F| It can also contain further columns for any covariates to be included in the model. The data files installed with this package have additional columns infection_history, last_vax_type, and exp_num. From 92c1a53c0b650fc877753552531f5d3f28a7165c Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Mon, 14 Oct 2024 17:55:44 +0100 Subject: [PATCH 08/11] passing tests --- DESCRIPTION | 1 + R/biokinetics.R | 24 ++++++-------- R/utils.R | 12 +++++-- R/validation.R | 2 +- R/zzz.R | 1 - tests/testthat/test-data.R | 4 +-- tests/testthat/test-input-validation.R | 2 +- tests/testthat/test-non-numeric-pids.R | 44 +++++++++++++++++++++++--- 8 files changed, 64 insertions(+), 26 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 0fe7725..5d79c89 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -25,6 +25,7 @@ Additional_repositories: https://mc-stan.org/r-packages/ SystemRequirements: CmdStan (https://mc-stan.org/users/interfaces/cmdstan) Suggests: + dplyr, ggplot2, knitr, lubridate, diff --git a/R/biokinetics.R b/R/biokinetics.R index 960c463..8dba2d2 100644 --- a/R/biokinetics.R +++ b/R/biokinetics.R @@ -72,10 +72,7 @@ biokinetics <- R6::R6Class( private$all_formula_vars) }, build_pid_lookup = function() { - pids <- unique(private$data$pid) - ids <- seq_along(pids) - private$pid_lookup <- ids - names(private$pid_lookup) <- pids + private$pid_lookup <- build_pid_lookup(private$data) }, recover_covariate_names = function(dt) { # Declare variables to suppress notes when compiling package @@ -339,7 +336,6 @@ biokinetics <- R6::R6Class( logger::log_info("Extracting parameters") dt_out <- private$extract_parameters(params, n_draws) - data.table::setcolorder(dt_out, c("k", ".draw")) data.table::setnames(dt_out, ".draw", "draw") dt_out[, pid := names(private$pid_lookup)[n]] @@ -348,6 +344,8 @@ biokinetics <- R6::R6Class( } dt_out$n <- NULL + data.table::setcolorder(dt_out, c("pid", "k", "draw")) + if (human_readable_covariates) { logger::log_info("Recovering covariate names") dt_out <- private$recover_covariate_names(dt_out) @@ -443,14 +441,14 @@ biokinetics <- R6::R6Class( #' @description Simulate individual trajectories from the model. This is #' computationally expensive and may take a while to run if n_draws is large. #' @return A data.table. If summarise = TRUE columns are calendar_date, titre_type, me, lo, hi, time_shift. - #' If summarise = FALSE, columns are pid, draw, t, mu, titre_type, exposure_date, calendar_date, time_shift - #' and a column for each covariate in the hierarchical model. See the data vignette for details: + #' If summarise = FALSE, columns are pid, draw, time_since_last_exp, mu, titre_type, exposure_day, calendar_day, time_shift + #' and a column for each covariate in the regression model. See the data vignette for details: #' \code{vignette("data", package = "epikinetics")}. #' @param summarise Boolean. If TRUE, average the individual trajectories to get lo, me and #' hi values for the population, disaggregated by titre type. If FALSE return the indidivudal trajectories. #' Default TRUE. #' @param n_draws Integer. Maximum number of samples to draw. Default 2500. - #' @param time_shift Integer. Number of days to adjust the exposure date by. Default 0. + #' @param time_shift Integer. Number of days to adjust the exposure day by. Default 0. simulate_individual_trajectories = function( summarise = TRUE, n_draws = 2500, @@ -468,26 +466,24 @@ biokinetics <- R6::R6Class( # Calculating the maximum time each individual has data for after the # exposure of interest dt_max_dates <- private$data[ - , .(t_max = max(t_since_last_exp)), by = .(pid)] + , .(t_max = max(t_since_last_exp)), by = "pid"] # A very small number of individuals have bleeds on the same day or a few days # after their recorded exposure dates, resulting in very short trajectories. # Adding a 50 day buffer to any individuals with less than or equal to 50 days # of observations after their focal exposure - dt_max_dates <- dt_max_dates[t_max <= 50, t_max := 50, by = .(pid)] + dt_max_dates <- dt_max_dates[t_max <= 50, t_max := 50, by = "pid"] # Merging the parameter draws with the maximum time data.table dt_params_ind <- merge(dt_params_ind, dt_max_dates, by = "pid") - dt_params_ind_trim <- dt_params_ind[, .SD[draw %in% 1:n_draws], by = pid] - # convert original pid to numeric pid - dt_params_ind_trim[, pid := private$pid_lookup[pid]] + dt_params_ind[, pid := private$pid_lookup[pid]] # Running the C++ code to simulate trajectories for each parameter sample # for each individual logger::log_info("Simulating individual trajectories") - dt_params_ind_traj <- biokinetics_simulate_trajectories(dt_params_ind_trim) + dt_params_ind_traj <- biokinetics_simulate_trajectories(dt_params_ind) dt_params_ind_traj <- data.table::setDT(convert_log_scale_inverse_cpp( dt_params_ind_traj, vars_to_transform = "mu")) diff --git a/R/utils.R b/R/utils.R index 90f6a3d..120399e 100644 --- a/R/utils.R +++ b/R/utils.R @@ -38,12 +38,12 @@ convert_log_scale_inverse <- function(dt_in, vars_to_transform) { #' @return A data.table with all columns required by the biokinetics model. #' @param dat_sero data.table containing titre values in the format required by biokinetics. See data vignette: \code{vignette("data", package = "epikinetics")}. #' @param dat_inf data.table containing exposure days and person ids corresponding to those in dat_sero. By default the exposure days are expected in a column called 'day'. -#' @param exposure_column. Default 'day'. The name of the column containing exposure days. These can be integers or dates. +#' @param exposure_column Default 'day'. The name of the column containing exposure days. These can be integers or dates. #' @export add_exposure_data <- function(dat_sero, dat_inf, exposure_column = 'day') { validate_required_cols(dat_sero, required_cols = c("pid", "day", "titre_type", "value")) validate_required_cols(dat_inf, required_cols = c("pid", exposure_column)) - dat_inf[, last_exp_day := max(get(exposure_column)), by = "pid"] + dat_inf[, "last_exp_day" := max(get(exposure_column)), by = "pid"] merge(dat_sero, dat_inf[, c("pid", "last_exp_day")], by = "pid", allow.cartesian=TRUE) } @@ -89,3 +89,11 @@ build_covariate_lookup_table <- function(data, design_matrix, all_formula_vars) dt_out[, p_name := NULL] dt_out } + +build_pid_lookup <- function(data) { + pids <- unique(data$pid) + ids <- seq_along(pids) + pid_lookup <- ids + names(pid_lookup) <- pids + pid_lookup +} \ No newline at end of file diff --git a/R/validation.R b/R/validation.R index faa19ac..9a2abf1 100644 --- a/R/validation.R +++ b/R/validation.R @@ -30,7 +30,7 @@ validate_formula_vars <- function(formula_vars, data) { } } -validate_required_cols <- function(dat, required_cols = c("pid", "day", "titre_type", "value", "last_exp_day")) { +validate_required_cols <- function(dat, required_cols = c("pid", "day", "last_exp_day", "titre_type", "value")) { missing_cols <- required_cols[!(required_cols %in% colnames(dat))] if (length(missing_cols) > 0) { stop(paste("Missing required columns:", diff --git a/R/zzz.R b/R/zzz.R index 6677285..f38971a 100644 --- a/R/zzz.R +++ b/R/zzz.R @@ -32,7 +32,6 @@ bin_stan <- file.path(libname, pkgname, "bin", "stan") source_path <- file.path(libname, pkgname, "src", "stan") fs::dir_copy(path = source_path, new_path = bin_stan, overwrite = TRUE) - message(fs::dir_ls(bin)) instantiate::stan_package_compile( models = instantiate::stan_package_model_files(path = bin_stan), cpp_options = list(stan_threads = TRUE), diff --git a/tests/testthat/test-data.R b/tests/testthat/test-data.R index bad0300..02b4611 100644 --- a/tests/testthat/test-data.R +++ b/tests/testthat/test-data.R @@ -26,7 +26,7 @@ test_that("Can construct stan data", { expect_equal(stan_data$N_events, 335) expect_equal(stan_data$mu_t0, priors$mu_t0) expect_equal(stan_data$sigma_t0, priors$sigma_t0) - expect_equal(stan_data$id, dat$pid) + expect_equivalent(stan_data$id, dat$pid) }) test_that("All data is assumed uncensored if no censored column provided", { @@ -45,5 +45,5 @@ test_that("Can handle non-numeric pids", { dat$pid <- paste0("ID-", dat$pid) mod <- biokinetics$new(data = dat) stan_data <- mod$get_stan_data() - expect_equal(stan_data$id, ids) + expect_equivalent(stan_data$id, ids) }) diff --git a/tests/testthat/test-input-validation.R b/tests/testthat/test-input-validation.R index edb439f..3b54dbd 100644 --- a/tests/testthat/test-input-validation.R +++ b/tests/testthat/test-input-validation.R @@ -31,7 +31,7 @@ test_that("Covariates must be present in data", { test_that("Required columns must be present in data", { dat <- data.table(test = 1) expect_error(biokinetics$new(data = dat, covariate_formula = 0~ bad), - "Missing required columns: pid, day, last_exp_day, titre_type, value, censored") + "Missing required columns: pid, day, last_exp_day, titre_type, value") }) test_that("Data must be a data.table", { diff --git a/tests/testthat/test-non-numeric-pids.R b/tests/testthat/test-non-numeric-pids.R index 9089ae8..d936f16 100644 --- a/tests/testthat/test-non-numeric-pids.R +++ b/tests/testthat/test-non-numeric-pids.R @@ -1,3 +1,28 @@ +test_that("Can convert character pids to numeric ids and back again", { + dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) + + dat$pid <- paste0("ID", dat$pid) + lookup <- build_pid_lookup(dat) + + pids <- dat$pid + dat[, nid := lookup[pid]] + dat[, recovered := names(lookup)[nid]] + + expect_equal(dat$recovered, dat$pid) +}) + +test_that("Can convert numeric pids to numeric ids and back again", { + dat <- data.table::fread(system.file("delta_full.rds", package = "epikinetics")) + + lookup <- build_pid_lookup(dat) + + pids <- dat$pid + dat[, nid := lookup[pid]] + dat[, recovered := as.numeric(names(lookup)[nid])] + + expect_equal(dat$recovered, dat$pid) +}) + test_that("Using numeric and non-numeric pids gives the same answer", { # these take a while, so don't run on CI skip_on_ci() @@ -11,26 +36,35 @@ test_that("Using numeric and non-numeric pids gives the same answer", { expect_equivalent(stan_data, stan_data_new) - mod$fit(parallel_chains = 4, + fit <- mod$fit(parallel_chains = 4, iter_warmup = 50, iter_sampling = 100, seed = 100) - mod_new$fit(parallel_chains = 4, + fit_new <- mod_new$fit(parallel_chains = 4, iter_warmup = 50, iter_sampling = 100, seed = 100) + expect_equivalent(fit$draws(), fit_new$draws()) + set.seed(1) params <- mod$extract_individual_parameters(100) set.seed(1) params_new <- mod_new$extract_individual_parameters(100) + params$pid <- paste0("ID", params$pid) expect_equivalent(params, params_new) - trajectories <- mod$simulate_individual_trajectories(summarise = FALSE) - trajectories_new <- mod_new$simulate_individual_trajectories(summarise = FALSE) + set.seed(1) + trajectories <- mod$simulate_individual_trajectories(summarise = FALSE, + n_draws = 100) - expect_equivalent(trajectories[, -"pid"], trajectories_new[, -"pid"]) + set.seed(1) + trajectories_new <- mod_new$simulate_individual_trajectories(summarise = FALSE, + n_draws = 100) + trajectories$pid <- paste0("ID", trajectories$pid) + trajectories <- dplyr::arrange(trajectories, pid) + expect_equivalent(trajectories, trajectories_new) }) From 35adc7295c7f776f6219f0720be94e3d2ba085c1 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Tue, 15 Oct 2024 12:22:22 +0100 Subject: [PATCH 09/11] update docs --- man/add_exposure_data.Rd | 2 +- man/biokinetics.Rd | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/man/add_exposure_data.Rd b/man/add_exposure_data.Rd index a2b744a..6c603ef 100644 --- a/man/add_exposure_data.Rd +++ b/man/add_exposure_data.Rd @@ -11,7 +11,7 @@ add_exposure_data(dat_sero, dat_inf, exposure_column = "day") \item{dat_inf}{data.table containing exposure days and person ids corresponding to those in dat_sero. By default the exposure days are expected in a column called 'day'.} -\item{exposure_column.}{Default 'day'. The name of the column containing exposure days. These can be integers or dates.} +\item{exposure_column}{Default 'day'. The name of the column containing exposure days. These can be integers or dates.} } \value{ A data.table with all columns required by the biokinetics model. diff --git a/man/biokinetics.Rd b/man/biokinetics.Rd index ce378fe..4a1c7a3 100644 --- a/man/biokinetics.Rd +++ b/man/biokinetics.Rd @@ -222,14 +222,14 @@ Default TRUE.} \item{\code{n_draws}}{Integer. Maximum number of samples to draw. Default 2500.} -\item{\code{time_shift}}{Integer. Number of days to adjust the exposure date by. Default 0.} +\item{\code{time_shift}}{Integer. Number of days to adjust the exposure day by. Default 0.} } \if{html}{\out{
}} } \subsection{Returns}{ A data.table. If summarise = TRUE columns are calendar_date, titre_type, me, lo, hi, time_shift. -If summarise = FALSE, columns are pid, draw, t, mu, titre_type, exposure_date, calendar_date, time_shift -and a column for each covariate in the hierarchical model. See the data vignette for details: +If summarise = FALSE, columns are pid, draw, time_since_last_exp, mu, titre_type, exposure_day, calendar_day, time_shift +and a column for each covariate in the regression model. See the data vignette for details: \code{vignette("data", package = "epikinetics")}. } } From 0323e5abaa67a50419f4ac172bc282571b6a3922 Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Tue, 15 Oct 2024 12:32:38 +0100 Subject: [PATCH 10/11] update data vignette --- vignettes/data.Rmd | 34 ++++++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index 1c00e27..204e6ef 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -94,3 +94,37 @@ There will also be a column for each covariate in the regression model. | titre_type | numeric | Name of the titre or biomarker | There will also be column for each covariate in the hierarchical model. + +## simulate_individual_trajectories + +See the documentation for this function [here](../reference/biokinetics.html#method-simulate-individual-trajectories). +There are 2 different output formats depending on whether the provided `summarise` argument is `TRUE` or `FALSE`. + +* `summarise = FALSE` + Returned columns are + + | name | type | description | + |---------------------|----------------------|---------------------------------------------------------------------------------------------| + | pid | character or numeric | Unique person identifier as provided in input data | + | draw | integer | Which draw from the fits this is | + | time_since_last_exp | integer | Number of days since last exposure | + | mu | numeric | Titre value | + | titre_type | character | Name of the titre or biomarker | + | exposure_day | integer | Day of this person's last exposure | + | calendar_day | integer | Day of this titre value | + | time_shift | integer | The number of days these exposures have been adjusted by, as provided in function arguments | + + There will also be a column for each covariate in the regression model. + + * `summarise = TRUE` + Returned columns are + + | name | type | description | + |--------------|-----------|--------------------------------------------------------------------------------------| + | me | numeric | Median titre value | + | lo | numeric | Titre value at the 0.025 quantile | + | hi | numeric | Titre value at the 0.075 quantile | + | titre_type | character | Name of the titre or biomarker | + | calendar_day | integer | Day of this titre value | + | time_shift | integer | The number of days the exposures were adjusted by, as provided in function arguments | + From 988e67ad596e3057696bc63c3ea7630a0b88786e Mon Sep 17 00:00:00 2001 From: "alex.hill@gmail.com" Date: Tue, 15 Oct 2024 17:41:35 +0100 Subject: [PATCH 11/11] update vignette --- DESCRIPTION | 6 +- R/utils.R | 2 +- README.md | 7 +- man/epikinetics-package.Rd | 6 +- tests/testthat/test-relative-dates.R | 5 + vignettes/data.Rmd | 141 ++++++++++++++------------- 6 files changed, 91 insertions(+), 76 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 5d79c89..30526c0 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,9 +1,9 @@ Package: epikinetics -Title: Antibody and Cycle Threshold Kinetics Modelling +Title: Biomarker Kinetics Modelling Version: 0.0.0.9000 Authors@R: c(person("Timothy", "Russell", email = "timothy.russell@lshtm.ac.uk", role = c("aut")), - person("Alex", "Hill", email = "alex.hill@gmail.com", role = c("ctb", "cre"))) -Description: What the package does (one paragraph). + person("Alex", "Hill", email = "alex.hill@gmail.com", role = c("aut", "cre"))) +Description: Fit kinetic curves to biomarker data, using a Bayesian hierarchical model License: GPL (>= 3) Encoding: UTF-8 Roxygen: list(markdown = TRUE) diff --git a/R/utils.R b/R/utils.R index 120399e..bae23d1 100644 --- a/R/utils.R +++ b/R/utils.R @@ -96,4 +96,4 @@ build_pid_lookup <- function(data) { pid_lookup <- ids names(pid_lookup) <- pids pid_lookup -} \ No newline at end of file +} diff --git a/README.md b/README.md index 2f403c9..f16d6ba 100644 --- a/README.md +++ b/README.md @@ -75,12 +75,15 @@ a few minutes. ## Testing -Most tests are run with +To run all tests locally: ```{r} devtools::test() ``` +Some tests are skipped on CI to avoid exorbitantly long build times, but this means +it is important to run all tests locally at least once before merging a pull request. + For snapshot testing of stan model outputs, we need the outputs to be exactly reproducible. As well as setting a seed, this requires the machine environment to be exactly the same, so on CI we run these inside a Docker container, via a bash script: @@ -91,6 +94,8 @@ to be exactly the same, so on CI we run these inside a Docker container, via a b This involves recompiling the model, so takes a while to run. +Note that + ## Docker To build a Docker image, run `docker/build`. To push a new image to Dockerhub, `docker/push`. An image is built and pushed diff --git a/man/epikinetics-package.Rd b/man/epikinetics-package.Rd index fad62b2..77153e1 100644 --- a/man/epikinetics-package.Rd +++ b/man/epikinetics-package.Rd @@ -4,12 +4,12 @@ \name{epikinetics-package} \alias{epikinetics} \alias{epikinetics-package} -\title{epikinetics: Antibody and Cycle Threshold Kinetics Modelling} +\title{epikinetics: Biomarker Kinetics Modelling} \description{ -What the package does (one paragraph). +Fit kinetic curves to biomarker data, using a Bayesian hierarchical model } \author{ -\strong{Maintainer}: Alex Hill \email{alex.hill@gmail.com} [contributor] +\strong{Maintainer}: Alex Hill \email{alex.hill@gmail.com} Authors: \itemize{ diff --git a/tests/testthat/test-relative-dates.R b/tests/testthat/test-relative-dates.R index b4710a1..28316cb 100644 --- a/tests/testthat/test-relative-dates.R +++ b/tests/testthat/test-relative-dates.R @@ -26,4 +26,9 @@ test_that("Using relative and absolute dates gives the same answer", { trajectories_relative$calendar_day <- min_date + trajectories_relative$calendar_day expect_equal(trajectories_relative, trajectories_absolute) + + population_trajectories_absolute <- mod_absolute$simulate_population_trajectories() + population_trajectories_relative <- mod_relative$simulate_population_trajectories() + + expect_equal(population_trajectories_absolute, population_trajectories_relative) }) diff --git a/vignettes/data.Rmd b/vignettes/data.Rmd index 204e6ef..e3a5320 100644 --- a/vignettes/data.Rmd +++ b/vignettes/data.Rmd @@ -16,16 +16,17 @@ knitr::opts_chunk$set( # Input data -The model requires a data table containing the following columns: - -| name | type | description | required | -|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------| -------- | -| pid | numeric | Unique number to identify a person across observations | T| -| day | integer or date | The day of the observation. Can be a date or an integer representing a relative day of study | T| -| last_exp_day | integer or date | The most recent day on which the person was exposed. Must be of the same type as the 'day' column | T| -| titre_type | character | Name of the titre or biomarker | T| -| value | numeric | Titre value | T| -| censored | -1, 0 or 1 | Optional column. Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none. | F| +The model requires time series data about individual titre readings, along with last exposure times. Times can be relative (e.g. day of study) or absolute (i.e. precise calendar dates). +The full list of required columns is as follows: + +| name | type | description | required | +|--------------|----------------------|-----------------------------------------------------------------------------------------------------------------| -------- | +| pid | numeric or character | Unique identifier to identify a person across observations | T| +| day | integer or date | The day of the observation. Can be a date or an integer representing a relative day of study | T| +| last_exp_day | integer or date | The most recent day on which the person was exposed. Must be of the same type as the 'day' column | T| +| titre_type | character | Name of the titre or biomarker | T| +| value | numeric | Titre value | T| +| censored | -1, 0 or 1 | Optional column. Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none. | F| It can also contain further columns for any covariates to be included in the model. The data files installed with this package have additional columns infection_history, last_vax_type, and exp_num. @@ -57,41 +58,43 @@ guidance on the correct interpretation of each column in the returned tables. (I See the documentation for this function [here](../reference/biokinetics.html#method-simulate-population-trajectories). There are 2 different output formats depending on whether the provided `summarise` argument is `TRUE` or `FALSE`. -* `summarise = TRUE` - Returned columns are +### summarise = TRUE + +Returned columns are - | name | type | description | - |---------------------|------------|-----------------------------------------------------------------------------------------------| - | time_since_last_exp | integer | Number of days since last exposure | - | me | numeric | Median titre value | - | lo | numeric | Titre value at the 0.025 quantile | - | hi | numeric | Titre value at the 0.975 quantile | - | titre_type | character | Name of the titre or biomarker | - | censored | -1, 0 or 1 | Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none | +| name | type | description | +|---------------------|------------|-----------------------------------------------------------------------------------------------| +| time_since_last_exp | integer | Number of days since last exposure | +| me | numeric | Median titre value | +| lo | numeric | Titre value at the 0.025 quantile | +| hi | numeric | Titre value at the 0.975 quantile | +| titre_type | character | Name of the titre or biomarker | +| censored | -1, 0 or 1 | Whether this observation should be treated as censored: -1 for lower, 1 for upper, 0 for none | There will also be a column for each covariate in the regression model. -* `summarise = FALSE` - Returned columns are - - | name | type | description | - |---------------------|---------|------------------------------------| - | time_since_last_exp | integer | Number of days since last exposure | - | t0_pop | numeric | | - | tp_pop | numeric | | - | ts_pop | numeric | | - | m1_pop | numeric | | - | m2_pop | numeric | | - | m3_pop | numeric | | - | beta_t0 | numeric | | - | beta_tp | numeric | | - | beta_ts | numeric | | - | beta_m1 | numeric | | - | beta_m2 | numeric | | - | beta_t3 | numeric | | - | mu | numeric | Titre value | - | .draw | integer | Draw number | - | titre_type | numeric | Name of the titre or biomarker | +### summarise = FALSE + +Returned columns are + +| name | type | description | +|---------------------|---------|------------------------------------| +| time_since_last_exp | integer | Number of days since last exposure | +| t0_pop | numeric | | +| tp_pop | numeric | | +| ts_pop | numeric | | +| m1_pop | numeric | | +| m2_pop | numeric | | +| m3_pop | numeric | | +| beta_t0 | numeric | | +| beta_tp | numeric | | +| beta_ts | numeric | | +| beta_m1 | numeric | | +| beta_m2 | numeric | | +| beta_t3 | numeric | | +| mu | numeric | Titre value | +| .draw | integer | Draw number | +| titre_type | numeric | Name of the titre or biomarker | There will also be column for each covariate in the hierarchical model. @@ -100,31 +103,33 @@ There will also be column for each covariate in the hierarchical model. See the documentation for this function [here](../reference/biokinetics.html#method-simulate-individual-trajectories). There are 2 different output formats depending on whether the provided `summarise` argument is `TRUE` or `FALSE`. -* `summarise = FALSE` - Returned columns are - - | name | type | description | - |---------------------|----------------------|---------------------------------------------------------------------------------------------| - | pid | character or numeric | Unique person identifier as provided in input data | - | draw | integer | Which draw from the fits this is | - | time_since_last_exp | integer | Number of days since last exposure | - | mu | numeric | Titre value | - | titre_type | character | Name of the titre or biomarker | - | exposure_day | integer | Day of this person's last exposure | - | calendar_day | integer | Day of this titre value | - | time_shift | integer | The number of days these exposures have been adjusted by, as provided in function arguments | - - There will also be a column for each covariate in the regression model. - - * `summarise = TRUE` - Returned columns are - - | name | type | description | - |--------------|-----------|--------------------------------------------------------------------------------------| - | me | numeric | Median titre value | - | lo | numeric | Titre value at the 0.025 quantile | - | hi | numeric | Titre value at the 0.075 quantile | - | titre_type | character | Name of the titre or biomarker | - | calendar_day | integer | Day of this titre value | - | time_shift | integer | The number of days the exposures were adjusted by, as provided in function arguments | +### summarise = FALSE + +Returned columns are + +| name | type | description | +|---------------------|----------------------|---------------------------------------------------------------------------------------------| +| pid | character or numeric | Unique person identifier as provided in input data | +| draw | integer | Which draw from the fits this is | +| time_since_last_exp | integer | Number of days since last exposure | +| mu | numeric | Titre value | +| titre_type | character | Name of the titre or biomarker | +| exposure_day | integer | Day of this person's last exposure | +| calendar_day | integer | Day of this titre value | +| time_shift | integer | The number of days these exposures have been adjusted by, as provided in function arguments | + +There will also be a column for each covariate in the regression model. + +### summarise = TRUE + +Returned columns are + +| name | type | description | +|--------------|-----------|--------------------------------------------------------------------------------------| +| me | numeric | Median titre value | +| lo | numeric | Titre value at the 0.025 quantile | +| hi | numeric | Titre value at the 0.075 quantile | +| titre_type | character | Name of the titre or biomarker | +| calendar_day | integer | Day of this titre value | +| time_shift | integer | The number of days the exposures were adjusted by, as provided in function arguments |