diff --git a/R/biokinetics.R b/R/biokinetics.R index 836ad1d..76ab240 100644 --- a/R/biokinetics.R +++ b/R/biokinetics.R @@ -296,10 +296,10 @@ biokinetics <- R6::R6Class( private$fitted <- private$model$sample(private$stan_input_data, ...) private$fitted }, - #' @description Extract fitted population parameters - #' @return A data.table - #' @param n_draws Numeric - #' @param human_readable_covariates Logical. Default TRUE. + #' @description Extract fitted population parameters + #' @return A data.table + #' @param n_draws Numeric + #' @param human_readable_covariates Logical. Default TRUE. extract_population_parameters = function(n_draws = 2500, human_readable_covariates = TRUE) { private$check_fitted() @@ -402,11 +402,11 @@ biokinetics <- R6::R6Class( } dt_out }, - #' @description Process the stan model results into a data.table. - #' @return A data.table of peak and set titre values. Columns are tire_type, mu_p, mu_s, rel_drop_me, mu_p_me, - #' mu_s_me, and a column for each covariate. See the data vignette for details: - #' \code{vignette("data", package = "epikinetics")} - #' @param n_draws Integer. Maximum number of samples to include. Default 2500. + #' @description Process the stan model results into a data.table. + #' @return A data.table of peak and set titre values. Columns are tire_type, mu_p, mu_s, rel_drop_me, mu_p_me, + #' mu_s_me, and a column for each covariate. See the data vignette for details: + #' \code{vignette("data", package = "epikinetics")} + #' @param n_draws Integer. Maximum number of samples to include. Default 2500. population_stationary_points = function(n_draws = 2500) { private$check_fitted() validate_numeric(n_draws)