-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_defect.py
374 lines (291 loc) · 21.1 KB
/
main_defect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
from myOpenDelta.opendelta import AdapterModel , LoraModel , PrefixModel
import argparse
import logging
import os
import torch
import numpy as np
from model import Model_classification
from tqdm import tqdm
import torch.nn as nn
from torch.nn.functional import binary_cross_entropy , binary_cross_entropy_with_logits
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaTokenizer ,RobertaModel , AutoTokenizer, T5ForConditionalGeneration , AutoConfig , AutoModel)
from sklearn.metrics import recall_score, precision_score, f1_score
from utilities import *
from optimization import *
from transformers import T5Config
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def train_defect(args, model, tokenizer, train_dataloader , eval_dataloader_defect , test_dataloader_defect=None ):
""" Train the model """
optimizer =torch.optim.Adam(model.parameters(), lr=args.learning_rate )
max_steps = len(train_dataloader) * args.num_train_epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=max_steps*0.1, num_training_steps=max_steps)
logger.info("***** Running training for defect detection *****")
logger.info(" Num examples = %d", len(train_dataloader.dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Total train batch size = %d", args.train_batch_size)
logger.info(" Total optimization steps = %d", len(train_dataloader)*args.num_train_epochs)
best_acc= - np.inf
model.zero_grad()
loss_fn = nn.BCELoss()
early_stopper = EarlyStopper(patience=3, min_delta=0.03)
results = {}
test_result = 0
for idx in range(args.num_train_epochs):
LOSSes, ACCs = [], []
#bar = tqdm(train_dataloader,total=len(train_dataloader))
for step, batch in enumerate(train_dataloader) : #enumerate(bar)
model.train()
code_inputs = batch[0].to(args.device)
labels = batch[1].to(args.device)
labels= labels.float().squeeze()
logits = model(code_inputs=code_inputs)
loss = loss_fn(logits,labels)
accuracy = (logits.round() == labels ).float().mean().item()*100.0
LOSSes.append(loss.item() )
# add current accuracies to accuracy arrays
ACCs.append(accuracy)
if (step+1)%100 == 0:
print("Epoch {} Step {} Train Loss {} Accuracy {} ".format(idx, step, round(np.mean(LOSSes), 3) , round(np.mean(ACCs), 3) ))
#bar.set_description("Epoch {} Train Loss {} Accuracy {} ".format(idx, round(np.mean(LOSSes), 3) , round(np.mean(ACCs), 3) ))
loss.backward()
# optimizer step
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
results.setdefault('train_loss', []).append(round(np.mean(LOSSes),3))
results.setdefault('train_acc', []).append(round(np.mean(ACCs),3))
eval_results = evaluate_defect(args, model, eval_dataloader_defect)
results.setdefault('eval_loss', []).append(round(eval_results['eval_loss'],3))
results.setdefault('eval_acc', []).append(round(eval_results['eval_acc'],3))
results.setdefault('eval_f1', []).append(round(eval_results['f1_score'],3))
results.setdefault('eval_precision', []).append(round(eval_results['precision'],3))
results.setdefault('eval_recall', []).append(round(eval_results['recall'],3))
for key, value in eval_results.items():
logger.info(" %s = %s", key, round(value,4))
eval_perf = eval_results['eval_acc']
if eval_perf>best_acc:
best_acc= eval_perf
logger.info("\n "+"*"*30)
logger.info(" Best validation performance :%s",round(best_acc,4))
logger.info(" "+"*"*30)
if not args.do_optimization :
test_result = test_defect(args, model, test_dataloader_defect)
save_best_model(model, args , checkpoint_prefix="models/best_model_defect")
# save best model
#if early_stopper.early_stop(round(eval_results['eval_loss'],3)):
#break
if not args.do_optimization :
save_best_model(model, args , checkpoint_prefix="models/final_model_defect")
final_test_result = test_defect(args, model, test_dataloader_defect)
return results
def evaluate_defect(args, model, eval_dataloader_vul):
logger.info("\n***** Running evaluation *****")
logger.info(" Num examples vulnerability detection = %d", len(eval_dataloader_vul.dataset))
logger.info(" Batch size = %d ", args.eval_batch_size)
model.eval()
loss_fn = nn.BCELoss()
eval_loss = 0.0
nb_eval_steps = 0
logits = []
labels = []
for batch in eval_dataloader_vul:
inputs = batch[0].to(args.device)
label = batch[1].to(args.device)
with torch.no_grad():
logit = model(code_inputs=inputs)
label = label.float().squeeze()
# Compute loss
lm_loss = loss_fn(logit, label)
eval_loss += lm_loss.mean().item()
logits.append(logit.cpu().numpy())
labels.append(label.cpu().numpy())
nb_eval_steps += 1
# Concatenate all logits and labels
logits = np.concatenate(logits, axis=0)
labels = np.concatenate(labels, axis=0)
# Binarize predictions
preds = logits.round()
# Calculate metrics
eval_acc = np.mean(labels == preds)
eval_loss = eval_loss / nb_eval_steps
perplexity = torch.tensor(eval_loss)
recall = recall_score(labels, preds)
precision = precision_score(labels, preds, zero_division=0)
f1 = f1_score(labels, preds)
result = {
"eval_loss": round(float(perplexity), 4),
"eval_acc": round(eval_acc, 4),
"f1_score": round(f1, 4),
"recall": round(recall, 4),
"precision": round(precision, 4)
}
return result
# Run test for one task
def test_defect(args, model, test_dataloader):
logits = []
labels = []
for batch in test_dataloader:
inputs = batch[0].to(args.device)
label = batch[1].to(args.device)
with torch.no_grad():
logit = model(code_inputs=inputs)
label = label.float().squeeze()
logits.append(logit.cpu().numpy())
labels.append(label.cpu().numpy())
logits = np.concatenate(logits, 0)
labels = np.concatenate(labels, 0)
preds = logits.round()
acc = np.mean(labels == preds)
recall = recall_score(labels , preds)
precision = precision_score(labels , preds , zero_division=0)
f1 = f1_score(labels , preds)
result = {
"test_acc": round(acc, 4),
"test_f1_score" : round(f1, 4),
"test_recall" : round(recall,4),
"test_precision" : round(precision,4)
}
logger.info("***** Test Results for task defect detection ")
logger.info(result )
return result
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--train_data_file_defect", default="./datasets/dataset_defect/train.jsonl", type=str,
help="The input training data file (a json file).")
parser.add_argument("--task", default="defect_detection", type=str,
help="Name of the task")
parser.add_argument("--eval_data_file_defect", default="./datasets/dataset_defect/valid.jsonl", type=str,
help="An optional input evaluation data file to evaluate the MRR(a jsonl file).")
parser.add_argument("--test_data_file_defect", default="./datasets/dataset_defect/test.jsonl", type=str,
help="An optional input test data file to test the MRR(a josnl file).")
parser.add_argument("--output_dir", default='./', type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--num_classes", default=1, type=int,
help="The number of classes for the classification model")
parser.add_argument("--codebase_file", default=None, type=str,
help="An optional input test data file to codebase (a jsonl file).")
parser.add_argument("--model_name_or_path", default='microsoft/unixcoder-base', type=str,
help="The model checkpoint for weights initialization.")
parser.add_argument("--config_name", default="microsoft/unixcoder-base", type=str,
help="Optional pretrained config name or path if not the same as model_name_or_path")
parser.add_argument("--tokenizer_name", default="microsoft/unixcoder-base", type=str,
help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")
parser.add_argument("--nl_length", default=128, type=int,
help="Optional NL input sequence length after tokenization.")
parser.add_argument("--code_length", default=512, type=int,
help="Optional Code input sequence length after tokenization.")
parser.add_argument("--do_optimization", default=None, type=bool,
help="Whether to run adapter optimization")
parser.add_argument("--do_train", default=None, type=bool,
help="Whether to run training.")
parser.add_argument("--do_eval", default=True, type=bool,
help="Whether to run eval on the dev set.")
parser.add_argument("--do_test", default=None, type=bool,
help="Whether to run eval on the test set.")
parser.add_argument("--train_batch_size", default=32, type=int,
help="Batch size for training.")
parser.add_argument("--eval_batch_size", default=32, type=int,
help="Batch size for evaluation.")
parser.add_argument("--train_data_rate_defect", default=1.0, type= float,
help="Data size for train")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=10, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--nb_samples", default=None, type=int,
help="Total number of train samples.")
parser.add_argument("--nb_samples_valid", default=None, type=int,
help="Total number of validation samples.")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--local_rank', default=-1 ,type=int,
help="random seed for initialization")
parser.add_argument('--population_size', default=None ,type=int,
help="population size on the evolutionary optimization algorithm")
parser.add_argument('--sample_size', default=None ,type=int,
help="sample size on the evolutionary optimization algorithm")
parser.add_argument('--cycles', default=None ,type=int,
help="number of cycles on the evolutionary optimization algorithm")
parser.add_argument('--optimization_history_file', default=None ,type=str,
help="saving the history of optimization")
parser.add_argument('--stats_file', default=None ,type=str,
help="saving the optimization statistics ")
args = parser.parse_args()
set_seed(seed=args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.n_gpu = 1 #torch.cuda.device_count()
args.device = device
logger.info("device: %s, n_gpu: %s", device, args.n_gpu)
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels = args.num_classes , trust_remote_code=True )
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path , trust_remote_code=True)
model = AutoModel.from_pretrained(args.model_name_or_path,config=config , trust_remote_code=True)
train_dataset=TextDataset_defect(tokenizer, args, args.train_data_file_defect, nb_samples =None) #args.nb_samples)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,num_workers=4, pin_memory=True )
# prepare validation data
eval_dataset_defect= TextDataset_defect(tokenizer, args,args.eval_data_file_defect,nb_samples=None) #args.nb_samples_valid )
eval_dataloader_defect = DataLoader(eval_dataset_defect , sampler=SequentialSampler(eval_dataset_defect ), batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
# prepare test dataloaders
test_dataset_defect= TextDataset_defect(tokenizer, args,args.test_data_file_defect, nb_samples=None) #args.nb_samples_valid)
test_dataloader_defect = DataLoader(test_dataset_defect , sampler=SequentialSampler(test_dataset_defect ), batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
if args.do_optimization:
logger.info("Starting optimization...")
history, population, best_of_all , stats= regularized_evolution(args, config , train_dataloader , eval_dataloader_defect)
else :
"""
# to test top configs
x_list = [
[{'insert_modules': ('layer.0', 'layer.1.DenseReluDense'), 'bottleneck_dim': (64, 128), 'non_linearity': 'relu', 'dropout_rate': 0.1, 'normalization': 'layer_norm', 'skip_connection': True}, 0, {'insert_modules': ('layer.1',), 'bottleneck_dim': (128,), 'non_linearity': 'leakyrelu', 'dropout_rate': 0.0, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense',), 'bottleneck_dim': (128,), 'non_linearity': 'gelu_new', 'dropout_rate': 0.0, 'normalization': 'layer_norm', 'skip_connection': True}, 0, {'insert_modules': ('layer.0', 'layer.1', 'layer.1.DenseReluDense'), 'bottleneck_dim': (64, 256, 128), 'non_linearity': 'gelu_new', 'dropout_rate': 0.25, 'normalization': 'layer_norm', 'skip_connection': True}, 0, {'insert_modules': ('layer.1.DenseReluDense',), 'bottleneck_dim': (64,), 'non_linearity': 'silu', 'dropout_rate': 0.3, 'normalization': None, 'skip_connection': True}, 0, {'insert_modules': ('layer.1', 'layer.0', 'layer.1.DenseReluDense'), 'bottleneck_dim': (256, 128, 64), 'non_linearity': 'silu', 'dropout_rate': 0.2, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.0', 'layer.0.SelfAttention'), 'bottleneck_dim': (64, 32), 'non_linearity': 'relu', 'dropout_rate': 0.3, 'normalization': None, 'skip_connection': True}, 0],
[0, {'insert_modules': ('layer.0.SelfAttention',), 'bottleneck_dim': (16,), 'non_linearity': 'silu', 'dropout_rate': 0.1, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense',), 'bottleneck_dim': (128,), 'non_linearity': 'gelu_new', 'dropout_rate': 0.25, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense', 'layer.0', 'layer.1'), 'bottleneck_dim': (128, 64, 128), 'non_linearity': 'tanh', 'dropout_rate': 0.3, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.1', 'layer.0', 'layer.0.SelfAttention'), 'bottleneck_dim': (128, 64, 16), 'non_linearity': 'tanh', 'dropout_rate': 0.1, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.1',), 'bottleneck_dim': (256,), 'non_linearity': 'leakyrelu', 'dropout_rate': 0.2, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense', 'layer.0.SelfAttention'), 'bottleneck_dim': (64, 16), 'non_linearity': 'leakyrelu', 'dropout_rate': 0.3, 'normalization': None, 'skip_connection': True}, 0, {'insert_modules': ('layer.0', 'layer.1.DenseReluDense', 'layer.0.SelfAttention'), 'bottleneck_dim': (128, 128, 32), 'non_linearity': 'gelu_new', 'dropout_rate': 0.3, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.0.SelfAttention', 'layer.0', 'layer.1.DenseReluDense'), 'bottleneck_dim': (32, 128, 64), 'non_linearity': 'tanh', 'dropout_rate': 0.0, 'normalization': None, 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense',), 'bottleneck_dim': (128,), 'non_linearity': 'gelu_new', 'dropout_rate': 0.0, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.0', 'layer.1.DenseReluDense', 'layer.0.SelfAttention'), 'bottleneck_dim': (64, 64, 16), 'non_linearity': 'swish', 'dropout_rate': 0.3, 'normalization': 'layer_norm', 'skip_connection': True}],
[{'insert_modules': ('layer.0.SelfAttention', 'layer.1.DenseReluDense', 'layer.0'), 'bottleneck_dim': (32, 128, 64), 'non_linearity': 'relu', 'dropout_rate': 0.1, 'normalization': None, 'skip_connection': True}, 0, {'insert_modules': ('layer.1.DenseReluDense', 'layer.0', 'layer.1'), 'bottleneck_dim': (128, 64, 256), 'non_linearity': 'swish', 'dropout_rate': 0.15, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.1', 'layer.0.SelfAttention'), 'bottleneck_dim': (256, 32), 'non_linearity': 'tanh', 'dropout_rate': 0.2, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.1.DenseReluDense',), 'bottleneck_dim': (128,), 'non_linearity': 'relu', 'dropout_rate': 0.15, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.0', 'layer.1'), 'bottleneck_dim': (64, 128), 'non_linearity': 'gelu_new', 'dropout_rate': 0.15, 'normalization': 'layer_norm', 'skip_connection': True}, {'insert_modules': ('layer.0.SelfAttention', 'layer.0'), 'bottleneck_dim': (32, 64), 'non_linearity': 'gelu', 'dropout_rate': 0.25, 'normalization': None, 'skip_connection': True}, 0, 0, {'insert_modules': ('layer.1', 'layer.0', 'layer.1.DenseReluDense'), 'bottleneck_dim': (256, 128, 64), 'non_linearity': 'silu', 'dropout_rate': 0.2, 'normalization': 'layer_norm', 'skip_connection': True}, 0, {'insert_modules': ('layer.0', 'layer.0.SelfAttention'), 'bottleneck_dim': (64, 32), 'non_linearity': 'relu', 'dropout_rate': 0.3, 'normalization': None, 'skip_connection': True}],
]
"""
# to finetune with a fixed adapter across all layers
delta = AdapterModel(model , bottleneck_dim=[24])
delta = LoraModel(model)
delta = PrefixModel(model)
delta.freeze_module(exclude=["deltas" ])
delta.log()
model = Model_classification( model , config)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=[0])
model.to(args.device)
if args.do_train:
# loop for training with different configs in x_list
"""
for x in x_list :
set_seed(seed=args.seed)
model = AutoModel.from_pretrained(args.model_name_or_path,config=config , trust_remote_code=True)
print('\n',x,'\n')
model = get_delta_model(model , x)
model = Model_classification( model , config)
model.to(args.device)
"""
results = train_defect(args , model ,tokenizer ,
train_dataloader ,
eval_dataloader_defect ,
test_dataloader_defect)
print("train results", results)
if args.do_eval:
checkpoint_prefix = 'models/best_model_defect/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir) , strict=False)
eval_dataset_vul= TextDataset_defect(tokenizer, args,args.eval_data_file_defect)
eval_dataloader_vul = DataLoader(eval_dataset_vul , sampler=SequentialSampler(eval_dataset_vul ), batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
result_task1= evaluate_defect(args, model, eval_dataloader_vul )
logger.info("\n***** Eval results *****")
for key , value in result_task1.items() :
logger.info(" %s = %s", key, str(value))
if args.do_test:
checkpoint_prefix = 'models/best_model_vul/model.bin'
output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))
model.load_state_dict(torch.load(output_dir), strict=False)
test_dataset_vul= TextDataset_defect(tokenizer, args,args.test_data_file_defect)
test_dataloader_vul = DataLoader(test_dataset_vul , sampler=SequentialSampler(test_dataset_vul ), batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)
task1_test_result = test_defect(args, model, test_dataloader_vul )
if __name__ == "__main__":
main()