-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathmain.py
42 lines (32 loc) · 1013 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
np.random.seed(42)
import tensorflow as tf
tf.random.set_seed(42)
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers.core import Dense, Dropout
from data import load_data
from utils import confusion_matrix
epochs = 30
batch_size = 16
n_hidden = 32
def _count_classes(y):
return len(set([tuple(category) for category in y]))
X_train, X_test, Y_train, Y_test = load_data()
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = _count_classes(Y_train)
model = Sequential()
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='sigmoid'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(X_train,
Y_train,
batch_size=batch_size,
validation_data=(X_test, Y_test),
epochs=epochs)
# Evaluate
print(confusion_matrix(Y_test, model.predict(X_test)))