-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathcuda.cu
181 lines (151 loc) Β· 4.76 KB
/
cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include <cuda_runtime.h>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
struct float10 {
float x[10];
};
struct ptr4 {
uchar3* v[4];
};
static __device__ __forceinline__ uchar3 belend(uchar3 a, uchar3 b, float w) {
return make_uchar3(a.x * w + b.x * (1 - w), a.y * w + b.y * (1 - w),
a.z * w + b.z * (1 - w));
}
static __global__ void surround_kernel(const float10* table, int w, int h,
ptr4 images, int iw, int ih,
uchar3* output) {
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int iy = blockDim.y * blockIdx.y + threadIdx.y;
if (ix >= w || iy >= h) return;
int pos = iy * w + ix;
float10 item = table[pos];
int flag = item.x[0];
float weight = item.x[1];
if (flag == -1) return;
if (flag < 4) {
int x = item.x[2 + flag * 2 + 0];
int y = item.x[2 + flag * 2 + 1];
output[pos] = images.v[flag][y * iw + x];
} else {
const int idxs[][2] = {{2, 1}, {0, 3}, {0, 1}, {2, 3}};
int a = idxs[flag - 4][0];
int b = idxs[flag - 4][1];
int ax = item.x[2 + a * 2 + 0];
int ay = item.x[2 + a * 2 + 1];
int bx = item.x[2 + b * 2 + 0];
int by = item.x[2 + b * 2 + 1];
output[pos] =
belend(images.v[a][ay * iw + ax], images.v[b][by * iw + bx], weight);
}
}
class Surrounder {
public:
virtual ~Surrounder() { destroy(); }
bool load(const std::string& file, int w, int h, int numcam, int camw,
int camh) {
FILE* f = fopen(file.c_str(), "rb");
if (f == nullptr) {
printf("Failed to load table: %s\n", file.c_str());
return false;
}
fseek(f, 0, SEEK_END);
size_t size = ftell(f);
fseek(f, 0, SEEK_SET);
if (size != w * h * 10 * sizeof(float)) {
printf("Invalid table file.\n");
fclose(f);
return false;
}
unsigned char* table_host = new unsigned char[size];
fread(table_host, 1, size, f);
fclose(f);
w_ = w;
h_ = h;
camw_ = camw;
camh_ = camh;
output_.create(h_, w_, CV_8UC3);
for (int i = 0; i < numcam; ++i) {
unsigned char* device_ptr = nullptr;
cudaMalloc(&device_ptr, camw * camh * 3 * sizeof(unsigned char));
images_device_.push_back(device_ptr);
}
cudaMalloc(&output_view_, w_ * h_ * 3 * sizeof(unsigned char));
cudaMalloc(&table_, size);
cudaMemcpy(table_, table_host, size, cudaMemcpyHostToDevice);
delete[] table_host;
return true;
}
cv::Mat forward(const std::vector<cv::Mat>& images,
cudaStream_t stream = nullptr) {
if (images.size() != images_device_.size()) {
printf("Mismatched image size.\n");
return cv::Mat();
}
for (int i = 0; i < images.size(); ++i) {
auto& image = images[i];
if (image.cols != camw_ || image.rows != camh_) {
printf("Invalid image size: %d x %d\n", image.cols, image.rows);
return cv::Mat();
}
cudaMemcpyAsync(images_device_[i], image.data,
image.cols * image.rows * 3 * sizeof(unsigned char),
cudaMemcpyHostToDevice, stream);
}
if (images.size() != 4) {
printf("Unsupported image size.\n");
return cv::Mat();
}
ptr4 images_ptr;
memcpy(images_ptr.v, images_device_.data(), sizeof(images_device_[0]) * 4);
dim3 block(32, 32);
dim3 grid((w_ + block.x - 1) / block.x, (h_ + block.y - 1) / block.y);
surround_kernel<<<grid, block, 0, stream>>>(
table_, w_, h_, images_ptr, camw_, camh_, (uchar3*)output_view_);
cudaMemcpyAsync(output_.data, output_view_,
output_.rows * output_.cols * 3 * sizeof(unsigned char),
cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
return output_;
}
private:
void destroy() {
for (int i = 0; i < images_device_.size(); ++i) {
cudaFree(images_device_[i]);
}
images_device_.clear();
if (table_) {
cudaFree(table_);
table_ = nullptr;
}
if (output_view_) {
cudaFree(output_view_);
output_view_ = nullptr;
}
}
private:
std::vector<unsigned char*> images_device_;
float10* table_ = nullptr;
unsigned char* output_view_ = nullptr;
cv::Mat output_;
int w_ = 0;
int h_ = 0;
int camw_ = 0;
int camh_ = 0;
};
int main() {
Surrounder surround;
if (!surround.load("surround_view.binary", 1200, 1600, 4, 960, 640)) {
return -1;
}
const char* image_names[] = {"front", "left", "back", "right"};
std::vector<cv::Mat> images;
for (int i = 0; i < 4; ++i) {
images.emplace_back(
cv::imread(cv::format("images/%s.png", image_names[i])));
}
auto output = surround.forward(images);
cv::imwrite("surround.jpg", output);
printf("hello %d x %d\n", images[0].cols, images[0].rows);
return 0;
}