-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfft.c
394 lines (308 loc) · 10.4 KB
/
fft.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
#include "fft.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define M_PI 3.14159265358979
/* ===== In-Place FFT ======================================================= */
void ffti_f(complex_f data[], unsigned log2_N, fft_dir direction)
{
ffti_shuffle_f(data, log2_N);
ffti_evaluate_f(data, log2_N, direction);
}
void ffti_copy_shuffle_f(complex_f src[], complex_f dst[], unsigned log2_N)
{
/*
* Basic Bit-Reversal Scheme:
*
* The incrementing pattern operations used here correspond
* to the logic operations of a synchronous counter.
*
* Incrementing a binary number simply flips a sequence of
* least-significant bits, for example from 0111 to 1000.
* So in order to compute the next bit-reversed index, we
* have to flip a sequence of most-significant bits.
*/
unsigned N = 1 << log2_N; /* N */
unsigned Nd2 = N >> 1; /* N/2 = number range midpoint */
unsigned Nm1 = N - 1; /* N-1 = digit mask */
unsigned i; /* index for source element */
unsigned j; /* index for next destination element */
for (i = 0, j = 0; i < N; i++) {
dst[j] = src[i];
/*
* Find least significant zero bit
*/
unsigned lszb = ~i & (i + 1);
/*
* Use division to bit-reverse the single bit so that we now have
* the most significant zero bit
*
* N = 2^r = 2^(m+1)
* Nd2 = N/2 = 2^m
* if lszb = 2^k, where k is within the range of 0...m, then
* mszb = Nd2 / lszb
* = 2^m / 2^k
* = 2^(m-k)
* = bit-reversed value of lszb
*/
unsigned mszb = Nd2 / lszb;
/*
* Toggle bits with bit-reverse mask
*/
unsigned bits = Nm1 & ~(mszb - 1);
j ^= bits;
}
}
void ffti_shuffle_f(complex_f data[], unsigned log2_N)
{
/*
* Basic Bit-Reversal Scheme:
*
* The incrementing pattern operations used here correspond
* to the logic operations of a synchronous counter.
*
* Incrementing a binary number simply flips a sequence of
* least-significant bits, for example from 0111 to 1000.
* So in order to compute the next bit-reversed index, we
* have to flip a sequence of most-significant bits.
*/
unsigned N = 1 << log2_N; /* N */
unsigned Nd2 = N >> 1; /* N/2 = number range midpoint */
unsigned Nm1 = N - 1; /* N-1 = digit mask */
unsigned i; /* index for array elements */
unsigned j; /* index for next element swap location */
for (i = 0, j = 0; i < N; i++) {
if (j > i) {
complex_f tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
/*
* Find least significant zero bit
*/
unsigned lszb = ~i & (i + 1);
/*
* Use division to bit-reverse the single bit so that we now have
* the most significant zero bit
*
* N = 2^r = 2^(m+1)
* Nd2 = N/2 = 2^m
* if lszb = 2^k, where k is within the range of 0...m, then
* mszb = Nd2 / lszb
* = 2^m / 2^k
* = 2^(m-k)
* = bit-reversed value of lszb
*/
unsigned mszb = Nd2 / lszb;
/*
* Toggle bits with bit-reverse mask
*/
unsigned bits = Nm1 & ~(mszb - 1);
j ^= bits;
}
}
void ffti_evaluate_f(complex_f data[], unsigned log2_N, fft_dir direction)
{
unsigned N;
unsigned r;
unsigned m, md2;
unsigned n, k;
unsigned i_e, i_o;
double theta_2pi;
double theta; /* Use double for precision */
complex_d Wm, Wmk; /* Use double for precision */
complex_d u, t; /* Use double for precision */
N = 1 << log2_N;
theta_2pi = (direction == FFT_FORWARD) ? -M_PI : M_PI;
theta_2pi *= 2;
for (r = 1; r <= log2_N; r++)
{
m = 1 << r;
md2 = m >> 1;
theta = theta_2pi / m;
Wm.re = cos(theta);
Wm.im = sin(theta);
for (n = 0; n < N; n += m)
{
Wmk.re = 1.f;
Wmk.im = 0.f;
for (k = 0; k < md2; k++)
{
i_e = n + k;
i_o = i_e + md2;
u.re = data[i_e].re;
u.im = data[i_e].im;
t.re = complex_mul_re(Wmk.re, Wmk.im, data[i_o].re, data[i_o].im);
t.im = complex_mul_im(Wmk.re, Wmk.im, data[i_o].re, data[i_o].im);
data[i_e].re = u.re + t.re;
data[i_e].im = u.im + t.im;
data[i_o].re = u.re - t.re;
data[i_o].im = u.im - t.im;
t.re = complex_mul_re(Wmk.re, Wmk.im, Wm.re, Wm.im);
t.im = complex_mul_im(Wmk.re, Wmk.im, Wm.re, Wm.im);
Wmk = t;
}
}
}
}
/* ===== Recursive FFT ====================================================== */
void fftr_f(complex_f data[], unsigned log2_N, fft_dir direction)
{
if (log2_N > 0)
{
unsigned log2_Nd2;
unsigned Nd2;
unsigned k;
unsigned kpNd2;
complex_f *evn, *odd;
double theta_pi;
double theta; /* Use double for precision */
complex_d WN, WNk; /* Use double for precision */
complex_d u, t; /* Use double for precision */
log2_Nd2 = log2_N - 1;
Nd2 = 1 << log2_Nd2;
evn = malloc(Nd2 * sizeof(complex_f));
odd = malloc(Nd2 * sizeof(complex_f));
for (k = 0; k < Nd2; k++)
{
evn[k] = data[2*k];
odd[k] = data[2*k+1];
}
fftr_f(evn, log2_Nd2, direction);
fftr_f(odd, log2_Nd2, direction);
theta_pi = (direction == FFT_FORWARD) ? -M_PI : M_PI;
theta = theta_pi / Nd2; /* - (2 * M_PI) / N */
WN.re = cos(theta);
WN.im = sin(theta);
WNk.re = 1.f;
WNk.im = 0.f;
for (k = 0; k < Nd2; k++)
{
kpNd2 = k + Nd2;
u.re = evn[k].re;
u.im = evn[k].im;
t.re = complex_mul_re(WNk.re, WNk.im, odd[k].re, odd[k].im);
t.im = complex_mul_im(WNk.re, WNk.im, odd[k].re, odd[k].im);
data[k].re = u.re + t.re;
data[k].im = u.im + t.im;
data[kpNd2].re = u.re - t.re;
data[kpNd2].im = u.im - t.im;
t.re = complex_mul_re(WNk.re, WNk.im, WN.re, WN.im);
t.im = complex_mul_im(WNk.re, WNk.im, WN.re, WN.im);
WNk = t;
}
free(evn);
free(odd);
}
}
/* ===== Recursive FFT, user-supplied scratchpad buffer ===================== */
#if 0
/*
* A more efficient version of the fftr_f() implementation, where a
* user-supplied buffer is used to hold the even/odd decompositions
*/
void fftrb_f(complex_f data[], unsigned log2_N, fft_dir direction, complex_f scratch[])
{
if (log2_N > 0)
{
unsigned log2_Nd2;
unsigned Nd2;
unsigned k;
unsigned kpNd2;
complex_f *evn, *odd;
double theta_pi;
double theta; /* Use double for precision */
complex_d WN, WNk; /* Use double for precision */
complex_d u, t; /* Use double for precision */
log2_Nd2 = log2_N - 1;
Nd2 = 1 << log2_Nd2;
evn = scratch;
odd = scratch + Nd2;
for (k = 0; k < Nd2; k++)
{
evn[k] = data[2*k];
odd[k] = data[2*k+1];
}
fftr_f(evn, log2_Nd2, direction);
fftr_f(odd, log2_Nd2, direction);
theta_pi = (direction == FFT_FORWARD) ? -M_PI : M_PI;
theta = theta_pi / Nd2; /* - (2 * M_PI) / N */
WN.re = cos(theta);
WN.im = sin(theta);
WNk.re = 1.f;
WNk.im = 0.f;
for (k = 0; k < Nd2; k++)
{
kpNd2 = k + Nd2;
u.re = evn[k].re;
u.im = evn[k].im;
t.re = complex_mul_re(WNk.re, WNk.im, odd[k].re, odd[k].im);
t.im = complex_mul_im(WNk.re, WNk.im, odd[k].re, odd[k].im);
data[k].re = u.re + t.re;
data[k].im = u.im + t.im;
data[kpNd2].re = u.re - t.re;
data[kpNd2].im = u.im - t.im;
t.re = complex_mul_re(WNk.re, WNk.im, WN.re, WN.im);
t.im = complex_mul_im(WNk.re, WNk.im, WN.re, WN.im);
WNk = t;
}
}
}
#else
/*
* A much more efficient version of the recursive FFT algorithm, where
* the data and scratch buffers are commutated throughout the recursion
* sequence, and index mapping is used to locate the correct values
*/
void _fftrb_f(complex_f data[], complex_f scratch[], int N, double theta_pi, int stride)
{
if (stride < N)
{
unsigned stride2;
unsigned k;
unsigned k_e, k_o;
unsigned kd2, kpNd2;
double theta; /* Use double for precision */
complex_d WN, WNk; /* Use double for precision */
complex_d u, t; /* Use double for precision */
stride2 = 2 * stride;
/* Notice that the order of data and scratch buffers is swapped! */
_fftrb_f(scratch , data , N, theta_pi, stride2);
_fftrb_f(scratch + stride, data + stride, N, theta_pi, stride2);
theta = (stride2 * theta_pi) / N;
WN.re = cos(theta);
WN.im = sin(theta);
WNk.re = 1.f;
WNk.im = 0.f;
for (k = 0; k < N; k += stride2)
{
k_e = k;
k_o = k + stride;
kd2 = k >> 1;
kpNd2 = (k + N) >> 1;
u.re = scratch[k_e].re;
u.im = scratch[k_e].im;
t.re = complex_mul_re(WNk.re, WNk.im, scratch[k_o].re, scratch[k_o].im);
t.im = complex_mul_im(WNk.re, WNk.im, scratch[k_o].re, scratch[k_o].im);
data[kd2].re = u.re + t.re;
data[kd2].im = u.im + t.im;
data[kpNd2].re = u.re - t.re;
data[kpNd2].im = u.im - t.im;
t.re = complex_mul_re(WNk.re, WNk.im, WN.re, WN.im);
t.im = complex_mul_im(WNk.re, WNk.im, WN.re, WN.im);
WNk = t;
}
}
}
void fftrb_f(complex_f data[], unsigned log2_N, fft_dir direction, complex_f scratch[])
{
unsigned N;
unsigned k;
double theta_pi;
N = 1 << log2_N;
for (k = 0; k < N; k++)
scratch[k] = data[k];
theta_pi = (direction == FFT_FORWARD) ? -M_PI : M_PI;
_fftrb_f(data, scratch, N, theta_pi, 1);
}
#endif