The code is embedded in this document! VOC can
run through this file and generate bessel.js
.
I really dislike writing Math
so I use:
var M = Math;
The methods use an approximating polynomial and evaluate using Horner's method:
function _horner(arr, v) { return arr.reduce(function(z,w){return v * z + w;},0); };
It can be shown that the four Bessel functions satisfy (on their support):
B_{n} (x) = \frac{2n}{x} B_{n-1}(x) - B_{n-2}(x)
So rather than go back and try to find solution for each order, we will build
solutions for n=0
and n=1
and then apply the recurrence. The helper:
function _bessel_iter(x, n, f0, f1, sign) {
if(!sign) sign = -1;
var tdx = 2 / x, f2;
if(n === 0) return f0;
if(n === 1) return f1;
for(var o = 1; o != n; ++o) {
f2 = f1 * o * tdx + sign * f0;
f0 = f1; f1 = f2;
}
return f1;
}
We can directly generate the JS function given the basic solutions bessel0
and
bessel1
by leveraging _bessel_iter
from above. We have to add a few sanity
checks since Y_n
is undefined at 0 and K_n
is real only when x>0
function _bessel_wrap(bessel0, bessel1, name, nonzero, sign) {
return function bessel(x,n) {
if(n === 0) return bessel0(x);
if(n === 1) return bessel1(x);
if(n < 0) throw name + ': Order (' + n + ') must be nonnegative';
if(nonzero == 1 && x === 0) throw name + ': Undefined when x == 0';
if(nonzero == 2 && x <= 0) throw name + ': Undefined when x <= 0';
var b0 = bessel0(x), b1 = bessel1(x);
return _bessel_iter(x, n, b0, b1, sign);
};
}
To determine each individual solution, we first calculate a Chebyshev polynomial based on the regime (lower and higher-value approximations). This module uses the constants from the GNU Scientific Library, and from the venerable Numerical Recipes book but I have independently verified the constants using Mathematica.
var besselj = (function() {
The constants are named b[01]_[ab]([12][ab])?
with the blocks corresponding to
the function order (e.g. b0_
refers to order 0), variable name in the function
and conditional.
var b0_a1a = [57568490574.0,-13362590354.0,651619640.7,-11214424.18,77392.33017,-184.9052456].reverse();
var b0_a2a = [57568490411.0,1029532985.0,9494680.718,59272.64853,267.8532712,1.0].reverse();
var b0_a1b = [1.0, -0.1098628627e-2, 0.2734510407e-4, -0.2073370639e-5, 0.2093887211e-6].reverse();
var b0_a2b = [-0.1562499995e-1, 0.1430488765e-3, -0.6911147651e-5, 0.7621095161e-6, -0.934935152e-7].reverse();
I noticed some strange oddities when leaning on Math.PI
, so it is cached:
var W = 0.636619772; // 2 / Math.PI
function bessel0(x) {
var a, a1, a2, y = x * x, xx = M.abs(x) - 0.785398164;
For small x
, the direct Laurent approximation gives better results.
if(M.abs(x) < 8) {
a1 = _horner(b0_a1a, y);
a2 = _horner(b0_a2a, y);
a = a1/a2;
}
For larger x
, the Chebyshev approach is taken:
else {
y = 64 / y;
a1 = _horner(b0_a1b, y);
a2 = _horner(b0_a2b, y);
a = M.sqrt(W/M.abs(x))*(M.cos(xx)*a1-M.sin(xx)*a2*8/M.abs(x));
}
return a;
}
A similar approach is taken for the first-order bessel function
var b1_a1a = [72362614232.0,-7895059235.0,242396853.1,-2972611.439, 15704.48260, -30.16036606].reverse();
var b1_a2a = [144725228442.0, 2300535178.0, 18583304.74, 99447.43394, 376.9991397, 1.0].reverse();
var b1_a1b = [1.0, 0.183105e-2, -0.3516396496e-4, 0.2457520174e-5, -0.240337019e-6].reverse();
var b1_a2b = [0.04687499995, -0.2002690873e-3, 0.8449199096e-5, -0.88228987e-6, 0.105787412e-6].reverse();
function bessel1(x) {
var a, a1, a2, y = x*x, xx = M.abs(x) - 2.356194491;
if(Math.abs(x)< 8) {
a1 = x*_horner(b1_a1a, y);
a2 = _horner(b1_a2a, y);
a = a1 / a2;
} else {
y = 64 / y;
a1=_horner(b1_a1b, y);
a2=_horner(b1_a2b, y);
a=M.sqrt(W/M.abs(x))*(M.cos(xx)*a1-M.sin(xx)*a2*8/M.abs(x));
if(x < 0) a = -a;
}
return a;
}
For large values of x, the aforementioned iteration is fine, but for small values the expressions quickly blow up. Hence a more careful iteration is used:
return function besselj(x, n) {
n = Math.round(n);
if(n === 0) return bessel0(M.abs(x));
if(n === 1) return bessel1(M.abs(x));
if(n < 0) throw 'BESSELJ: Order (' + n + ') must be nonnegative';
if(M.abs(x) === 0) return 0;
var ret, j, tox = 2 / M.abs(x), m, jsum, sum, bjp, bj, bjm;
if(M.abs(x) > n) {
ret = _bessel_iter(x, n, bessel0(M.abs(x)), bessel1(M.abs(x)),-1);
} else {
m=2*M.floor((n+M.floor(M.sqrt(40*n)))/2);
jsum=0;
bjp=ret=sum=0.0;
bj=1.0;
for (j=m;j>0;j--) {
bjm=j*tox*bj-bjp;
bjp=bj;
bj=bjm;
if (M.abs(bj) > 1E10) {
bj *= 1E-10;
bjp *= 1E-10;
ret *= 1E-10;
sum *= 1E-10;
}
if (jsum) sum += bj;
jsum=!jsum;
if (j == n) ret=bjp;
}
sum=2.0*sum-bj;
ret /= sum;
}
return x < 0 && (n%2) ? -ret : ret;
};
})();
The second kind function Y
is a bit less finicky:
var bessely = (function() {
var b0_a1a = [-2957821389.0, 7062834065.0, -512359803.6, 10879881.29, -86327.92757, 228.4622733].reverse();
var b0_a2a = [40076544269.0, 745249964.8, 7189466.438, 47447.26470, 226.1030244, 1.0].reverse();
var b0_a1b = [1.0, -0.1098628627e-2, 0.2734510407e-4, -0.2073370639e-5, 0.2093887211e-6].reverse();
var b0_a2b = [-0.1562499995e-1, 0.1430488765e-3, -0.6911147651e-5, 0.7621095161e-6, -0.934945152e-7].reverse();
var W = 0.636619772;
function bessel0(x) {
var a, a1, a2, y = x * x, xx = x - 0.785398164;
if(x < 8) {
a1 = _horner(b0_a1a, y);
a2 = _horner(b0_a2a, y);
a = a1/a2 + W * besselj(x,0) * M.log(x);
} else {
y = 64 / y;
a1 = _horner(b0_a1b, y);
a2 = _horner(b0_a2b, y);
a = M.sqrt(W/x)*(M.sin(xx)*a1+M.cos(xx)*a2*8/x);
}
return a;
}
var b1_a1a = [-0.4900604943e13, 0.1275274390e13, -0.5153438139e11, 0.7349264551e9, -0.4237922726e7, 0.8511937935e4].reverse();
var b1_a2a = [0.2499580570e14, 0.4244419664e12, 0.3733650367e10, 0.2245904002e8, 0.1020426050e6, 0.3549632885e3, 1].reverse();
var b1_a1b = [1.0, 0.183105e-2, -0.3516396496e-4, 0.2457520174e-5, -0.240337019e-6].reverse();
var b1_a2b = [0.04687499995, -0.2002690873e-3, 0.8449199096e-5, -0.88228987e-6, 0.105787412e-6].reverse();
function bessel1(x) {
var a, a1, a2, y = x*x, xx = x - 2.356194491;
if(x < 8) {
a1 = x*_horner(b1_a1a, y);
a2 = _horner(b1_a2a, y);
a = a1/a2 + W * (besselj(x,1) * M.log(x) - 1 / x);
} else {
y = 64 / y;
a1=_horner(b1_a1b, y);
a2=_horner(b1_a2b, y);
a=M.sqrt(W/x)*(M.sin(xx)*a1+M.cos(xx)*a2*8/x);
}
return a;
}
return _bessel_wrap(bessel0, bessel1, 'BESSELY', 1, -1);
})();
And the modified Bessel functions are even easier:
var besseli = (function() {
var b0_a = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2].reverse();
var b0_b = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2, -0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2].reverse();
function bessel0(x) {
if(x <= 3.75) return _horner(b0_a, x*x/(3.75*3.75));
return M.exp(M.abs(x))/M.sqrt(M.abs(x))*_horner(b0_b, 3.75/M.abs(x));
}
var b1_a = [0.5, 0.87890594, 0.51498869, 0.15084934, 0.2658733e-1, 0.301532e-2, 0.32411e-3].reverse();
var b1_b = [0.39894228, -0.3988024e-1, -0.362018e-2, 0.163801e-2, -0.1031555e-1, 0.2282967e-1, -0.2895312e-1, 0.1787654e-1, -0.420059e-2].reverse();
function bessel1(x) {
if(x < 3.75) return x * _horner(b1_a, x*x/(3.75*3.75));
return (x < 0 ? -1 : 1) * M.exp(M.abs(x))/M.sqrt(M.abs(x))*_horner(b1_b, 3.75/M.abs(x));
}
return function besseli(x, n) {
n = Math.round(n);
if(n === 0) return bessel0(x);
if(n == 1) return bessel1(x);
if(n < 0) throw 'BESSELI Order (' + n + ') must be nonnegative';
if(M.abs(x) === 0) return 0;
var ret, j, tox = 2 / M.abs(x), m, bip, bi, bim;
m=2*M.round((n+M.round(M.sqrt(40*n)))/2);
bip=ret=0.0;
bi=1.0;
for (j=m;j>0;j--) {
bim=j*tox*bi + bip;
bip=bi; bi=bim;
if (M.abs(bi) > 1E10) {
bi *= 1E-10;
bip *= 1E-10;
ret *= 1E-10;
}
if(j == n) ret = bip;
}
ret *= besseli(x, 0) / bi;
return x < 0 && (n%2) ? -ret : ret;
};
})();
var besselk = (function() {
var b0_a = [-0.57721566, 0.42278420, 0.23069756, 0.3488590e-1, 0.262698e-2, 0.10750e-3, 0.74e-5].reverse();
var b0_b = [1.25331414, -0.7832358e-1, 0.2189568e-1, -0.1062446e-1, 0.587872e-2, -0.251540e-2, 0.53208e-3].reverse();
function bessel0(x) {
if(x <= 2) return -M.log(x/2)*besseli(x,0) + _horner(b0_a, x*x/4);
return M.exp(-x)/M.sqrt(x)*_horner(b0_b, 2/x);
}
var b1_a = [1.0, 0.15443144, -0.67278579, -0.18156897, -0.1919402e-1, -0.110404e-2, -0.4686e-4].reverse();
var b1_b = [1.25331414, 0.23498619, -0.3655620e-1, 0.1504268e-1, -0.780353e-2, 0.325614e-2, -0.68245e-3].reverse();
function bessel1(x) {
if(x <= 2) return M.log(x/2)*besseli(x,1) + (1/x)*_horner(b1_a, x*x/4);
return M.exp(-x)/M.sqrt(x)*_horner(b1_b, 2/x);
}
return _bessel_wrap(bessel0, bessel1, 'BESSELK', 2, 1);
})();
Now we need to export:
if(typeof exports !== "undefined") {
exports.besselj = besselj;
exports.bessely = bessely;
exports.besseli = besseli;
exports.besselk = besselk;
}
Fortunately, these functions are available in Excel, so you can test there (or use the same functions in Mathematica). Note that this uses Excel semantics, which are reverse from Mathematica:
BesselJ[n, x] (* Mathematica *)