-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose.py
executable file
·162 lines (130 loc) · 5.39 KB
/
pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/bin/env python3
import cv2
import mediapipe as mp
from argparse import ArgumentParser
import os
from operator import itemgetter
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
def get_bbox(detection):
"""
Return the bounding box for the given detection
"""
if 0:
print("Eyes",
mp_face_detection.get_key_point(detection, mp_face_detection.FaceKeyPoint.LEFT_EYE),
mp_face_detection.get_key_point(detection, mp_face_detection.FaceKeyPoint.RIGHT_EYE)
)
bbox = detection.location_data.relative_bounding_box
pos = mp_face_detection.get_key_point(detection,
mp_face_detection.FaceKeyPoint.NOSE_TIP)
return {
"name": "face",
"box": {
"left": round((bbox.xmin) * 100),
"bottom": round((bbox.ymin) * 100),
"right": round((bbox.xmin + bbox.width) * 100),
"top": round((bbox.ymin + bbox.height) * 100),
},
"size": (bbox.width * bbox.height) * 100,
"posX": round(pos.x * 100),
"posY": round(pos.y * 100),
"value": detection.score[0]
}
# For static images:
def analyze_images(options):
IMAGE_FILES = options.images
BG_COLOR = (192, 192, 192) # gray
with mp_pose.Pose(
static_image_mode=True,
model_complexity=2,
enable_segmentation=True,
min_detection_confidence=0.5) as pose:
for idx, file in enumerate(IMAGE_FILES):
image = cv2.imread(file)
image_height, image_width, _ = image.shape
# Convert the BGR image to RGB before processing.
results = pose.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.pose_landmarks:
continue
print(
f'Nose coordinates: ('
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].x * image_width}, '
f'{results.pose_landmarks.landmark[mp_pose.PoseLandmark.NOSE].y * image_height})'
)
annotated_image = image.copy()
# Draw segmentation on the image.
# To improve segmentation around boundaries, consider applying a joint
# bilateral filter to "results.segmentation_mask" with "image".
condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > 0.1
bg_image = np.zeros(image.shape, dtype=np.uint8)
bg_image[:] = BG_COLOR
annotated_image = np.where(condition, annotated_image, bg_image)
# Draw pose landmarks on the image.
mp_drawing.draw_landmarks(
annotated_image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
cv2.imwrite('/tmp/annotated_image' + str(idx) + '.png', annotated_image)
# Plot pose world landmarks.
mp_drawing.plot_landmarks(
results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
print(dir(mp_pose.PoseLandmark))
def analyze_video(options):
# For webcam input:
cap = cv2.VideoCapture(options.video)
with mp_pose.Pose(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Flip the image horizontally for a later selfie-view display, and convert
# the BGR image to RGB.
if options.selfie:
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width, channels = image.shape
image2 = image[0:height, 0:round(width * 0.5)]
print("Resized to", image.shape, image2.shape)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = pose.process(image2)
# Draw the pose annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image2, cv2.COLOR_RGB2BGR)
if results.pose_landmarks:
print(results.pose_landmarks.landmark[mp_pose.PoseLandmark.RIGHT_THUMB])
# print(dir(results.pose_landmarks.landmark[0]))
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
cv2.imshow('MediaPipe Pose', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('images', metavar='N', type=str, nargs='*',
help='List of images to analyze')
parser.add_argument("-v", "--video", dest="video", help="Input video file (or stream?)",
required=False)
parser.add_argument("-o", "--output", dest="output", help="Output file", required=True)
parser.add_argument("--selfie", dest="selfie", help="Mirror video (for selfies)", action="store_true", default=False,
required=False)
options = parser.parse_args()
if options.video:
res = analyze_video(options)
else:
res = analyze_images(options)
print("Dumping result")
open(options.output, "w").write(json.dumps(res, indent=" "))