-
Notifications
You must be signed in to change notification settings - Fork 37
/
user_product_rank.py
65 lines (56 loc) · 3.57 KB
/
user_product_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gc
import pandas as pd
import numpy as np
import os
import json
import sklearn.metrics
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from scipy.sparse import dok_matrix, coo_matrix
from sklearn.utils.multiclass import type_of_target
if __name__ == '__main__':
path = "data"
aisles = pd.read_csv(os.path.join(path, "aisles.csv"), dtype={'aisle_id': np.uint8, 'aisle': 'category'})
departments = pd.read_csv(os.path.join(path, "departments.csv"),
dtype={'department_id': np.uint8, 'department': 'category'})
order_prior = pd.read_csv(os.path.join(path, "order_products__prior.csv"), dtype={'order_id': np.uint32,
'product_id': np.uint16,
'add_to_cart_order': np.uint8,
'reordered': bool})
order_train = pd.read_csv(os.path.join(path, "order_products__train.csv"), dtype={'order_id': np.uint32,
'product_id': np.uint16,
'add_to_cart_order': np.uint8,
'reordered': bool})
orders = pd.read_csv(os.path.join(path, "orders.csv"), dtype={'order_id': np.uint32,
'user_id': np.uint32,
'eval_set': 'category',
'order_number': np.uint8,
'order_dow': np.uint8,
'order_hour_of_day': np.uint8
})
products = pd.read_csv(os.path.join(path, "products.csv"), dtype={'product_id': np.uint16,
'aisle_id': np.uint8,
'department_id': np.uint8})
order_train = pd.read_pickle(os.path.join(path, 'chunk_0.pkl'))
orders_products = pd.merge(orders, order_prior, on="order_id")
orders_products_products = pd.merge(orders_products, products[['product_id', 'department_id', 'aisle_id']],
on='product_id')
user_dep_stat = orders_products_products.groupby(['user_id', 'department_id']).agg(
{'product_id': lambda x: x.nunique(),
'reordered': 'sum'
})
print(user_dep_stat.columns)
user_dep_stat.rename(columns={'product_id': 'dep_products',
'reordered': 'dep_reordered'}, inplace=True)
user_dep_stat.reset_index(inplace=True)
print(user_dep_stat.columns)
user_dep_stat.to_pickle('data/user_department_products.pkl')
user_aisle_stat = orders_products_products.groupby(['user_id', 'aisle_id']).agg(
{'product_id': lambda x: x.nunique(),
'reordered': 'sum'
})
print(user_aisle_stat.columns)
user_aisle_stat.rename(columns={'product_id': 'aisle_products',
'reordered': 'aisle_reordered'}, inplace=True)
user_aisle_stat.reset_index(inplace=True)
user_aisle_stat.to_pickle('data/user_aisle_products.pkl')