-
Notifications
You must be signed in to change notification settings - Fork 0
/
usb_dev.c
968 lines (855 loc) · 24.6 KB
/
usb_dev.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/* Teensyduino Core Library
* http://www.pjrc.com/teensy/
* Copyright (c) 2013 PJRC.COM, LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* 1. The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* 2. If the Software is incorporated into a build system that allows
* selection among a list of target devices, then similar target
* devices manufactured by PJRC.COM must be included in the list of
* target devices and selectable in the same manner.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "mk20dx128.h"
//#include "HardwareSerial.h"
#include "usb_dev.h"
#include "usb_mem.h"
// buffer descriptor table
typedef struct {
uint32_t desc;
void * addr;
} bdt_t;
__attribute__ ((section(".usbdescriptortable"), used))
static bdt_t table[(NUM_ENDPOINTS+1)*4];
static usb_packet_t *rx_first[NUM_ENDPOINTS];
static usb_packet_t *rx_last[NUM_ENDPOINTS];
static usb_packet_t *tx_first[NUM_ENDPOINTS];
static usb_packet_t *tx_last[NUM_ENDPOINTS];
uint16_t usb_rx_byte_count_data[NUM_ENDPOINTS];
static uint8_t tx_state[NUM_ENDPOINTS];
#define TX_STATE_BOTH_FREE_EVEN_FIRST 0
#define TX_STATE_BOTH_FREE_ODD_FIRST 1
#define TX_STATE_EVEN_FREE 2
#define TX_STATE_ODD_FREE 3
#define TX_STATE_NONE_FREE_EVEN_FIRST 4
#define TX_STATE_NONE_FREE_ODD_FIRST 5
#define BDT_OWN 0x80
#define BDT_DATA1 0x40
#define BDT_DATA0 0x00
#define BDT_DTS 0x08
#define BDT_STALL 0x04
#define BDT_PID(n) (((n) >> 2) & 15)
#define BDT_DESC(count, data) (BDT_OWN | BDT_DTS \
| ((data) ? BDT_DATA1 : BDT_DATA0) \
| ((count) << 16))
#define TX 1
#define RX 0
#define ODD 1
#define EVEN 0
#define DATA0 0
#define DATA1 1
#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
static union {
struct {
union {
struct {
uint8_t bmRequestType;
uint8_t bRequest;
};
uint16_t wRequestAndType;
};
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;
};
struct {
uint32_t word1;
uint32_t word2;
};
} setup;
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
#define SYNCH_FRAME 12
// SETUP always uses a DATA0 PID for the data field of the SETUP transaction.
// transactions in the data phase start with DATA1 and toggle (figure 8-12, USB1.1)
// Status stage uses a DATA1 PID.
static uint8_t ep0_rx0_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static uint8_t ep0_rx1_buf[EP0_SIZE] __attribute__ ((aligned (4)));
static const uint8_t *ep0_tx_ptr = NULL;
static uint16_t ep0_tx_len;
static uint8_t ep0_tx_bdt_bank = 0;
static uint8_t ep0_tx_data_toggle = 0;
uint8_t usb_rx_memory_needed = 0;
volatile uint8_t usb_configuration = 0;
volatile uint8_t usb_reboot_timer = 0;
static void endpoint0_stall(void)
{
USB0_ENDPT0 = USB_ENDPT_EPSTALL | USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
}
static void endpoint0_transmit(const void *data, uint32_t len)
{
#if 0
serial_print("tx0:");
serial_phex32((uint32_t)data);
serial_print(",");
serial_phex16(len);
serial_print(ep0_tx_bdt_bank ? ", odd" : ", even");
serial_print(ep0_tx_data_toggle ? ", d1\n" : ", d0\n");
#endif
table[index(0, TX, ep0_tx_bdt_bank)].addr = (void *)data;
table[index(0, TX, ep0_tx_bdt_bank)].desc = BDT_DESC(len, ep0_tx_data_toggle);
ep0_tx_data_toggle ^= 1;
ep0_tx_bdt_bank ^= 1;
}
static uint8_t reply_buffer[8];
static void usb_setup(void)
{
const uint8_t *data = NULL;
uint32_t datalen = 0;
const usb_descriptor_list_t *list;
uint32_t size;
volatile uint8_t *reg;
uint8_t epconf;
const uint8_t *cfg;
int i;
switch (setup.wRequestAndType) {
case 0x0500: // SET_ADDRESS
break;
case 0x0900: // SET_CONFIGURATION
//serial_print("configure\n");
usb_configuration = setup.wValue;
reg = &USB0_ENDPT1;
cfg = usb_endpoint_config_table;
// clear all BDT entries, free any allocated memory...
for (i=4; i <= NUM_ENDPOINTS*4; i++) {
if (table[i].desc & BDT_OWN) {
usb_free((usb_packet_t *)((uint8_t *)(table[i].addr) - 8));
}
}
// free all queued packets
for (i=0; i < NUM_ENDPOINTS; i++) {
usb_packet_t *p, *n;
p = rx_first[i];
while (p) {
n = p->next;
usb_free(p);
p = n;
}
rx_first[i] = NULL;
rx_last[i] = NULL;
p = tx_first[i];
while (p) {
n = p->next;
usb_free(p);
p = n;
}
tx_first[i] = NULL;
tx_last[i] = NULL;
usb_rx_byte_count_data[i] = 0;
switch (tx_state[i]) {
case TX_STATE_EVEN_FREE:
case TX_STATE_NONE_FREE_EVEN_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
case TX_STATE_NONE_FREE_ODD_FIRST:
tx_state[i] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
break;
}
}
usb_rx_memory_needed = 0;
for (i=1; i <= NUM_ENDPOINTS; i++) {
epconf = *cfg++;
*reg = epconf;
reg += 4;
if (epconf & USB_ENDPT_EPRXEN) {
usb_packet_t *p;
p = usb_malloc();
if (p) {
table[index(i, RX, EVEN)].addr = p->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
} else {
table[index(i, RX, EVEN)].desc = 0;
usb_rx_memory_needed++;
}
p = usb_malloc();
if (p) {
table[index(i, RX, ODD)].addr = p->buf;
table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
} else {
table[index(i, RX, ODD)].desc = 0;
usb_rx_memory_needed++;
}
}
table[index(i, TX, EVEN)].desc = 0;
table[index(i, TX, ODD)].desc = 0;
}
break;
case 0x0880: // GET_CONFIGURATION
reply_buffer[0] = usb_configuration;
datalen = 1;
data = reply_buffer;
break;
case 0x0080: // GET_STATUS (device)
reply_buffer[0] = 0;
reply_buffer[1] = 0;
datalen = 2;
data = reply_buffer;
break;
case 0x0082: // GET_STATUS (endpoint)
if (setup.wIndex > NUM_ENDPOINTS) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
reply_buffer[0] = 0;
reply_buffer[1] = 0;
if (*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4) & 0x02) reply_buffer[0] = 1;
data = reply_buffer;
datalen = 2;
break;
case 0x0102: // CLEAR_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if (i > NUM_ENDPOINTS || setup.wValue != 0) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) &= ~0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0302: // SET_FEATURE (endpoint)
i = setup.wIndex & 0x7F;
if (i > NUM_ENDPOINTS || setup.wValue != 0) {
// TODO: do we need to handle IN vs OUT here?
endpoint0_stall();
return;
}
(*(uint8_t *)(&USB0_ENDPT0 + setup.wIndex * 4)) |= 0x02;
// TODO: do we need to clear the data toggle here?
break;
case 0x0680: // GET_DESCRIPTOR
case 0x0681:
//serial_print("desc:");
//serial_phex16(setup.wValue);
//serial_print("\n");
for (list = usb_descriptor_list; 1; list++) {
if (list->addr == NULL) break;
//if (setup.wValue == list->wValue &&
//(setup.wIndex == list->wIndex) || ((setup.wValue >> 8) == 3)) {
if (setup.wValue == list->wValue && setup.wIndex == list->wIndex) {
data = list->addr;
if ((setup.wValue >> 8) == 3) {
// for string descriptors, use the descriptor's
// length field, allowing runtime configured
// length.
datalen = *(list->addr);
} else {
datalen = list->length;
}
#if 0
serial_print("Desc found, ");
serial_phex32((uint32_t)data);
serial_print(",");
serial_phex16(datalen);
serial_print(",");
serial_phex(data[0]);
serial_phex(data[1]);
serial_phex(data[2]);
serial_phex(data[3]);
serial_phex(data[4]);
serial_phex(data[5]);
serial_print("\n");
#endif
goto send;
}
}
//serial_print("desc: not found\n");
endpoint0_stall();
return;
#if defined(CDC_STATUS_INTERFACE)
case 0x2221: // CDC_SET_CONTROL_LINE_STATE
usb_cdc_line_rtsdtr = setup.wValue;
//serial_print("set control line state\n");
break;
case 0x2021: // CDC_SET_LINE_CODING
//serial_print("set coding, waiting...\n");
return;
#endif
// TODO: this does not work... why?
#if defined(SEREMU_INTERFACE) || defined(KEYBOARD_INTERFACE)
case 0x0921: // HID SET_REPORT
//serial_print(":)\n");
return;
case 0x0A21: // HID SET_IDLE
break;
// case 0xC940:
#endif
default:
endpoint0_stall();
return;
}
send:
//serial_print("setup send ");
//serial_phex32(data);
//serial_print(",");
//serial_phex16(datalen);
//serial_print("\n");
if (datalen > setup.wLength) datalen = setup.wLength;
size = datalen;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
if (datalen == 0 && size < EP0_SIZE) return;
size = datalen;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
datalen -= size;
if (datalen == 0 && size < EP0_SIZE) return;
ep0_tx_ptr = data;
ep0_tx_len = datalen;
}
//A bulk endpoint's toggle sequence is initialized to DATA0 when the endpoint
//experiences any configuration event (configuration events are explained in
//Sections 9.1.1.5 and 9.4.5).
//Configuring a device or changing an alternate setting causes all of the status
//and configuration values associated with endpoints in the affected interfaces
//to be set to their default values. This includes setting the data toggle of
//any endpoint using data toggles to the value DATA0.
//For endpoints using data toggle, regardless of whether an endpoint has the
//Halt feature set, a ClearFeature(ENDPOINT_HALT) request always results in the
//data toggle being reinitialized to DATA0.
// #define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
static void usb_control(uint32_t stat)
{
bdt_t *b;
uint32_t pid, size;
uint8_t *buf;
const uint8_t *data;
b = stat2bufferdescriptor(stat);
pid = BDT_PID(b->desc);
//count = b->desc >> 16;
buf = b->addr;
//serial_print("pid:");
//serial_phex(pid);
//serial_print(", count:");
//serial_phex(count);
//serial_print("\n");
switch (pid) {
case 0x0D: // Setup received from host
//serial_print("PID=Setup\n");
//if (count != 8) ; // panic?
// grab the 8 byte setup info
setup.word1 = *(uint32_t *)(buf);
setup.word2 = *(uint32_t *)(buf + 4);
// give the buffer back
b->desc = BDT_DESC(EP0_SIZE, DATA1);
//table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 1);
//table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 1);
// clear any leftover pending IN transactions
ep0_tx_ptr = NULL;
if (ep0_tx_data_toggle) {
}
//if (table[index(0, TX, EVEN)].desc & 0x80) {
//serial_print("leftover tx even\n");
//}
//if (table[index(0, TX, ODD)].desc & 0x80) {
//serial_print("leftover tx odd\n");
//}
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// first IN after Setup is always DATA1
ep0_tx_data_toggle = 1;
#if 0
serial_print("bmRequestType:");
serial_phex(setup.bmRequestType);
serial_print(", bRequest:");
serial_phex(setup.bRequest);
serial_print(", wValue:");
serial_phex16(setup.wValue);
serial_print(", wIndex:");
serial_phex16(setup.wIndex);
serial_print(", len:");
serial_phex16(setup.wLength);
serial_print("\n");
#endif
// actually "do" the setup request
usb_setup();
// unfreeze the USB, now that we're ready
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
break;
case 0x01: // OUT transaction received from host
case 0x02:
//serial_print("PID=OUT\n");
#ifdef CDC_STATUS_INTERFACE
if (setup.wRequestAndType == 0x2021 /*CDC_SET_LINE_CODING*/) {
int i;
uint8_t *dst = (uint8_t *)usb_cdc_line_coding;
//serial_print("set line coding ");
for (i=0; i<7; i++) {
//serial_phex(*buf);
*dst++ = *buf++;
}
//serial_phex32(usb_cdc_line_coding[0]);
//serial_print("\n");
if (usb_cdc_line_coding[0] == 134) usb_reboot_timer = 15;
endpoint0_transmit(NULL, 0);
}
#endif
#ifdef KEYBOARD_INTERFACE
if (setup.word1 == 0x02000921 && setup.word2 == ((1<<16)|KEYBOARD_INTERFACE)) {
keyboard_leds = buf[0];
endpoint0_transmit(NULL, 0);
}
#endif
#ifdef SEREMU_INTERFACE
if (setup.word1 == 0x03000921 && setup.word2 == ((4<<16)|SEREMU_INTERFACE)
&& buf[0] == 0xA9 && buf[1] == 0x45 && buf[2] == 0xC2 && buf[3] == 0x6B) {
usb_reboot_timer = 5;
endpoint0_transmit(NULL, 0);
}
#endif
// give the buffer back
b->desc = BDT_DESC(EP0_SIZE, DATA1);
break;
case 0x09: // IN transaction completed to host
//serial_print("PID=IN:");
//serial_phex(stat);
//serial_print("\n");
// send remaining data, if any...
data = ep0_tx_ptr;
if (data) {
size = ep0_tx_len;
if (size > EP0_SIZE) size = EP0_SIZE;
endpoint0_transmit(data, size);
data += size;
ep0_tx_len -= size;
ep0_tx_ptr = (ep0_tx_len > 0 || size == EP0_SIZE) ? data : NULL;
}
if (setup.bRequest == 5 && setup.bmRequestType == 0) {
setup.bRequest = 0;
//serial_print("set address: ");
//serial_phex16(setup.wValue);
//serial_print("\n");
USB0_ADDR = setup.wValue;
}
break;
//default:
//serial_print("PID=unknown:");
//serial_phex(pid);
//serial_print("\n");
}
USB0_CTL = USB_CTL_USBENSOFEN; // clear TXSUSPENDTOKENBUSY bit
}
usb_packet_t *usb_rx(uint32_t endpoint)
{
usb_packet_t *ret;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return NULL;
__disable_irq();
ret = rx_first[endpoint];
if (ret) rx_first[endpoint] = ret->next;
usb_rx_byte_count_data[endpoint] -= ret->len;
__enable_irq();
//serial_print("rx, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32(ret);
//serial_print("\n");
return ret;
}
static uint32_t usb_queue_byte_count(const usb_packet_t *p)
{
uint32_t count=0;
__disable_irq();
for ( ; p; p = p->next) {
count += p->len;
}
__enable_irq();
return count;
}
// TODO: make this an inline function...
/*
uint32_t usb_rx_byte_count(uint32_t endpoint)
{
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
return usb_rx_byte_count_data[endpoint];
//return usb_queue_byte_count(rx_first[endpoint]);
}
*/
uint32_t usb_tx_byte_count(uint32_t endpoint)
{
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
return usb_queue_byte_count(tx_first[endpoint]);
}
uint32_t usb_tx_packet_count(uint32_t endpoint)
{
const usb_packet_t *p;
uint32_t count=0;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return 0;
p = tx_first[endpoint];
__disable_irq();
for ( ; p; p = p->next) count++;
__enable_irq();
return count;
}
// Called from usb_free, but only when usb_rx_memory_needed > 0, indicating
// receive endpoints are starving for memory. The intention is to give
// endpoints needing receive memory priority over the user's code, which is
// likely calling usb_malloc to obtain memory for transmitting. When the
// user is creating data very quickly, their consumption could starve reception
// without this prioritization. The packet buffer (input) is assigned to the
// first endpoint needing memory.
//
void usb_rx_memory(usb_packet_t *packet)
{
unsigned int i;
const uint8_t *cfg;
cfg = usb_endpoint_config_table;
//serial_print("rx_mem:");
__disable_irq();
for (i=1; i <= NUM_ENDPOINTS; i++) {
if (*cfg++ & USB_ENDPT_EPRXEN) {
if (table[index(i, RX, EVEN)].desc == 0) {
table[index(i, RX, EVEN)].addr = packet->buf;
table[index(i, RX, EVEN)].desc = BDT_DESC(64, 0);
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",even\n");
return;
}
if (table[index(i, RX, ODD)].desc == 0) {
table[index(i, RX, ODD)].addr = packet->buf;
table[index(i, RX, ODD)].desc = BDT_DESC(64, 1);
usb_rx_memory_needed--;
__enable_irq();
//serial_phex(i);
//serial_print(",odd\n");
return;
}
}
}
__enable_irq();
// we should never reach this point. If we get here, it means
// usb_rx_memory_needed was set greater than zero, but no memory
// was actually needed.
usb_rx_memory_needed = 0;
usb_free(packet);
return;
}
//#define index(endpoint, tx, odd) (((endpoint) << 2) | ((tx) << 1) | (odd))
//#define stat2bufferdescriptor(stat) (table + ((stat) >> 2))
void usb_tx(uint32_t endpoint, usb_packet_t *packet)
{
bdt_t *b = &table[index(endpoint, TX, EVEN)];
uint8_t next;
endpoint--;
if (endpoint >= NUM_ENDPOINTS) return;
__disable_irq();
//serial_print("txstate=");
//serial_phex(tx_state[endpoint]);
//serial_print("\n");
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
next = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
b++;
next = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
next = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
b++;
next = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
if (tx_first[endpoint] == NULL) {
tx_first[endpoint] = packet;
} else {
tx_last[endpoint]->next = packet;
}
tx_last[endpoint] = packet;
__enable_irq();
return;
}
tx_state[endpoint] = next;
b->addr = packet->buf;
b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
__enable_irq();
}
void _reboot_Teensyduino_(void)
{
// TODO: initialize R0 with a code....
asm volatile("bkpt");
}
void usb_isr(void)
{
uint8_t status, stat, t;
//serial_print("isr");
//status = USB0_ISTAT;
//serial_phex(status);
//serial_print("\n");
restart:
status = USB0_ISTAT;
if ((status & USB_INTEN_SOFTOKEN /* 04 */ )) {
if (usb_configuration) {
t = usb_reboot_timer;
if (t) {
usb_reboot_timer = --t;
if (!t) _reboot_Teensyduino_();
}
#ifdef CDC_DATA_INTERFACE
t = usb_cdc_transmit_flush_timer;
if (t) {
usb_cdc_transmit_flush_timer = --t;
if (t == 0) usb_serial_flush_callback();
}
#endif
#ifdef SEREMU_INTERFACE
t = usb_seremu_transmit_flush_timer;
if (t) {
usb_seremu_transmit_flush_timer = --t;
if (t == 0) usb_seremu_flush_callback();
}
#endif
#ifdef MIDI_INTERFACE
usb_midi_flush_output();
#endif
#ifdef FLIGHTSIM_INTERFACE
usb_flightsim_flush_callback();
#endif
}
USB0_ISTAT = USB_INTEN_SOFTOKEN;
}
if ((status & USB_ISTAT_TOKDNE /* 08 */ )) {
uint8_t endpoint;
stat = USB0_STAT;
//serial_print("token: ep=");
//serial_phex(stat >> 4);
//serial_print(stat & 0x08 ? ",tx" : ",rx");
//serial_print(stat & 0x04 ? ",odd\n" : ",even\n");
endpoint = stat >> 4;
if (endpoint == 0) {
usb_control(stat);
} else {
bdt_t *b = stat2bufferdescriptor(stat);
usb_packet_t *packet = (usb_packet_t *)((uint8_t *)(b->addr) - 8);
#if 0
serial_print("ep:");
serial_phex(endpoint);
serial_print(", pid:");
serial_phex(BDT_PID(b->desc));
serial_print(((uint32_t)b & 8) ? ", odd" : ", even");
serial_print(", count:");
serial_phex(b->desc >> 16);
serial_print("\n");
#endif
endpoint--; // endpoint is index to zero-based arrays
if (stat & 0x08) { // transmit
usb_free(packet);
packet = tx_first[endpoint];
if (packet) {
//serial_print("tx packet\n");
tx_first[endpoint] = packet->next;
b->addr = packet->buf;
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
tx_state[endpoint] = TX_STATE_ODD_FREE;
break;
case TX_STATE_BOTH_FREE_ODD_FIRST:
tx_state[endpoint] = TX_STATE_EVEN_FREE;
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_ODD_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_NONE_FREE_EVEN_FIRST;
break;
default:
break;
}
b->desc = BDT_DESC(packet->len, ((uint32_t)b & 8) ? DATA1 : DATA0);
} else {
//serial_print("tx no packet\n");
switch (tx_state[endpoint]) {
case TX_STATE_BOTH_FREE_EVEN_FIRST:
case TX_STATE_BOTH_FREE_ODD_FIRST:
break;
case TX_STATE_EVEN_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_EVEN_FIRST;
break;
case TX_STATE_ODD_FREE:
tx_state[endpoint] = TX_STATE_BOTH_FREE_ODD_FIRST;
break;
default:
tx_state[endpoint] = ((uint32_t)b & 8) ?
TX_STATE_ODD_FREE : TX_STATE_EVEN_FREE;
break;
}
}
} else { // receive
packet->len = b->desc >> 16;
if (packet->len > 0) {
packet->index = 0;
packet->next = NULL;
if (rx_first[endpoint] == NULL) {
//serial_print("rx 1st, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_first[endpoint] = packet;
} else {
//serial_print("rx Nth, epidx=");
//serial_phex(endpoint);
//serial_print(", packet=");
//serial_phex32((uint32_t)packet);
//serial_print("\n");
rx_last[endpoint]->next = packet;
}
rx_last[endpoint] = packet;
usb_rx_byte_count_data[endpoint] += packet->len;
// TODO: implement a per-endpoint maximum # of allocated packets
// so a flood of incoming data on 1 endpoint doesn't starve
// the others if the user isn't reading it regularly
packet = usb_malloc();
if (packet) {
b->addr = packet->buf;
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
} else {
//serial_print("starving ");
//serial_phex(endpoint + 1);
//serial_print(((uint32_t)b & 8) ? ",odd\n" : ",even\n");
b->desc = 0;
usb_rx_memory_needed++;
}
} else {
b->desc = BDT_DESC(64, ((uint32_t)b & 8) ? DATA1 : DATA0);
}
}
}
USB0_ISTAT = USB_ISTAT_TOKDNE;
goto restart;
}
if (status & USB_ISTAT_USBRST /* 01 */ ) {
//serial_print("reset\n");
// initialize BDT toggle bits
USB0_CTL = USB_CTL_ODDRST;
ep0_tx_bdt_bank = 0;
// set up buffers to receive Setup and OUT packets
table[index(0, RX, EVEN)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, EVEN)].addr = ep0_rx0_buf;
table[index(0, RX, ODD)].desc = BDT_DESC(EP0_SIZE, 0);
table[index(0, RX, ODD)].addr = ep0_rx1_buf;
table[index(0, TX, EVEN)].desc = 0;
table[index(0, TX, ODD)].desc = 0;
// activate endpoint 0
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
// clear all ending interrupts
USB0_ERRSTAT = 0xFF;
USB0_ISTAT = 0xFF;
// set the address to zero during enumeration
USB0_ADDR = 0;
// enable other interrupts
USB0_ERREN = 0xFF;
USB0_INTEN = USB_INTEN_TOKDNEEN |
USB_INTEN_SOFTOKEN |
USB_INTEN_STALLEN |
USB_INTEN_ERROREN |
USB_INTEN_USBRSTEN |
USB_INTEN_SLEEPEN;
// is this necessary?
USB0_CTL = USB_CTL_USBENSOFEN;
return;
}
if ((status & USB_ISTAT_STALL /* 80 */ )) {
//serial_print("stall:\n");
USB0_ENDPT0 = USB_ENDPT_EPRXEN | USB_ENDPT_EPTXEN | USB_ENDPT_EPHSHK;
USB0_ISTAT = USB_ISTAT_STALL;
}
if ((status & USB_ISTAT_ERROR /* 02 */ )) {
uint8_t err = USB0_ERRSTAT;
USB0_ERRSTAT = err;
//serial_print("err:");
//serial_phex(err);
//serial_print("\n");
USB0_ISTAT = USB_ISTAT_ERROR;
}
if ((status & USB_ISTAT_SLEEP /* 10 */ )) {
//serial_print("sleep\n");
USB0_ISTAT = USB_ISTAT_SLEEP;
}
}
void usb_init(void)
{
int i;
//serial_begin(BAUD2DIV(115200));
//serial_print("usb_init\n");
usb_init_serialnumber();
for (i=0; i <= NUM_ENDPOINTS*4; i++) {
table[i].desc = 0;
table[i].addr = 0;
}
// this basically follows the flowchart in the Kinetis
// Quick Reference User Guide, Rev. 1, 03/2012, page 141
// assume 48 MHz clock already running
// SIM - enable clock
SIM_SCGC4 |= SIM_SCGC4_USBOTG;
// reset USB module
USB0_USBTRC0 = USB_USBTRC_USBRESET;
while ((USB0_USBTRC0 & USB_USBTRC_USBRESET) != 0) ; // wait for reset to end
// set desc table base addr
USB0_BDTPAGE1 = ((uint32_t)table) >> 8;
USB0_BDTPAGE2 = ((uint32_t)table) >> 16;
USB0_BDTPAGE3 = ((uint32_t)table) >> 24;
// clear all ISR flags
USB0_ISTAT = 0xFF;
USB0_ERRSTAT = 0xFF;
USB0_OTGISTAT = 0xFF;
USB0_USBTRC0 |= 0x40; // undocumented bit
// enable USB
USB0_CTL = USB_CTL_USBENSOFEN;
USB0_USBCTRL = 0;
// enable reset interrupt
USB0_INTEN = USB_INTEN_USBRSTEN;
// enable interrupt in NVIC...
NVIC_ENABLE_IRQ(IRQ_USBOTG);
// enable d+ pullup
USB0_CONTROL = USB_CONTROL_DPPULLUPNONOTG;
}