-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickhull.py
301 lines (208 loc) · 9.79 KB
/
quickhull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# quickhull.py
# Quickhull Algorithm
# By: Shahzeb Jadoon
def convex_hull(unordered_points):
""" Preprocess (sort, and eliminate repeated points), and use quickhull algorithm
pre: unordered_points is a list which is not sorted in nondecreasing order.
unordered_points comprises of tuples of the form (x, y) where x represents
the x-axis location and y represents the y-axis location of the point
on the cartesian plane
post: returns the list of points which form the conve hull when connected
in the order they are in the list
"""
convex_merge_sort(unordered_points)
ordered_points = convex_elim(unordered_points)
hull_lst = quick_hull(ordered_points)
return hull_lst
def convex_merge_sort(unordered_points):
""" Helping function for convex_hull() which sorts the points in nondecreasing order
pre: unordered_points is a list that needs to be sorted in nondecreasing order.
unordered_points comprises of tuples of the form (x, y) where x represents
the x-axis location and y represents the y-axis location of the point
on the cartesian plane
post: sorts the unordered_points in non-decreasing order
"""
lst_size = len(unordered_points)
if lst_size > 1:
first_half = unordered_points[:lst_size//2]
second_half = unordered_points[lst_size//2:]
convex_merge_sort(first_half)
convex_merge_sort(second_half)
convex_merge(first_half, second_half, unordered_points)
def convex_merge(first_half, second_half, lst):
""" Helping function for convex_merge_sort()
pre: first_half and second_half are the first and second half of the list
that have been sorted
post: alters lst so that the elements of first_half and second_half are
placed in nondecreasing order
"""
i = 0; j = 0; k = 0
p = len(first_half); q = len(second_half)
while i < p and j < q:
if first_half[i] <= second_half[j]:
lst[k] = first_half[i]
i += 1
else:
lst[k] = second_half[j]
j += 1
k += 1
if i == p:
for item in second_half[j:]:
lst[k] = item
k += 1
else:
for item in first_half[i:]:
lst[k] = item
k += 1
def convex_elim(ordered_points):
""" Helping function for convex_hull() which eliminates repeating points
pre: ordered_points is a list of points sorted in nondecreasing order.
ordered_points comprises of tuples of the form (x, y) where x represents
the x-axis location and y represents the y-axis location of the point
on the cartesian plane
post: retruns a list with distinct points of ordered_points
"""
new_lst = []
for i in range(len(ordered_points) - 1):
if ordered_points[i] != ordered_points[i + 1]:
new_lst.append(ordered_points[i])
new_lst.append(ordered_points[-1])
return new_lst
def quick_hull(ordered_points):
""" Helping function for convex_hull() that finds the points that comprise the
convex hull of the ordered_points
pre: ordered_points is a list of points sorted in nondecreasing order.
ordered_points comprises of tuples of the form (x, y) where x represents
the x-axis location and y represents the y-axis location of the point
on the cartesian plane
post: returns the list of points which form the conve hull when connected
in the order they are in the list
"""
lst_size = len(ordered_points)
if lst_size > 2:
p_first = ordered_points[0]
p_last = ordered_points[-1]
determ_lst = [determ(p_first, p_last, p) for p in ordered_points]
left_points = [(ordered_points[i], determ_lst[i]) for i in range(lst_size) if determ_lst[i] > 0]
right_points = [(ordered_points[i], determ_lst[i]) for i in range(lst_size) if determ_lst[i] < 0]
upper_points = upper_hull(p_first, p_last, left_points)
lower_points = lower_hull(p_first, p_last, right_points)
lower_points = reverse(lower_points)
convex_hull_lst = [p_first] + upper_points + [p_last] + lower_points
return convex_hull_lst
else:
return ordered_points
def determ(p1, p2, p3):
""" Helping function for convex_hull() that calculates the determinant of 3 points
pre: p1, p2, p3 are tuples of the form (x, y) where x represents
the x-axis location and y represents the y-axis location of the point
on the cartesian plane
post: returns the determinant of the three points (p1, p2, & p3)
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
return (x1*y2 + x3*y1 + x2*y3 - x3*y2 - x2*y1 - x1*y3)
def reverse(lst):
""" Helping function for convex_hull() that reverses the order of a list
pre: lst is a python list
post: returns a list which is a mirror image of lst (lst is reversed)
"""
new_lst = []
for i in range(len(lst) - 1, -1, -1):
new_lst.append(lst[i])
return new_lst
def upper_hull(p_first, p_last, points):
""" Helping function for convex_hull() that returns the points that comprise the
upper part/hull of the convex hull
pre: p_first and p_last are points with the lowest and highest x-value. points is
a list containing tuples of the structure ((x, y), det) where (x, y) is itself a
tuple representing a point on the cartesian plane with x and y being the x-axis
and y-axis values respectively. The det is the determinant of the point (x, y)
with p_first and p_last.
post: returns the points that comprise the upper hull when connected in the
order they are in the list
"""
lst_size = len(points)
if lst_size > 1:
p_max, max_det = points[0]
for p, det in points:
if det > max_det:
p_max = p
max_det = det
determ_lst1 = [determ(p_first, p_max, p) for p, d in points]
determ_lst2 = [determ(p_max, p_last, p) for p, d in points]
p_lst1 = [(points[i][0], determ_lst1[i]) for i in range(lst_size) if determ_lst1[i] > 0]
p_lst2 = [(points[i][0], determ_lst2[i]) for i in range(lst_size) if determ_lst2[i] > 0]
left_half = upper_hull(p_first, p_max, p_lst1)
right_half = upper_hull(p_max, p_last, p_lst2)
left_half.append(p_max)
left_half.extend(right_half)
return left_half
else:
if points == []:
return points
else:
return [points[0][0]]
def lower_hull(p_first, p_last, points):
""" Helping function for convex_hull() that returns the points that comprise the
lower part/hull of the convex hull
pre: p_first and p_last are points with the lowest and highest x-value. points is
a list containing tuples of the structure ((x, y), det) where (x, y) is itself a
tuple representing a point on the cartesian plane with x and y being the x-axis
and y-axis values respectively. The det is the determinant of the point (x, y)
with p_first and p_last.
post: returns the points that comprise the lower hull when connected in the
order they are in the list after the list is reversed
"""
lst_size = len(points)
if lst_size > 1:
p_max, max_det = points[0]
for p, det in points:
if det < max_det:
p_max = p
max_det = det
determ_lst1 = [determ(p_first, p_max, p) for p, d in points]
determ_lst2 = [determ(p_max, p_last, p) for p, d in points]
p_lst1 = [(points[i][0], determ_lst1[i]) for i in range(lst_size) if determ_lst1[i] < 0]
p_lst2 = [(points[i][0], determ_lst2[i]) for i in range(lst_size) if determ_lst2[i] < 0]
left_half = lower_hull(p_first, p_max, p_lst1)
right_half = lower_hull(p_max, p_last, p_lst2)
left_half.append(p_max)
left_half.extend(right_half)
return left_half
else:
if points == []:
return points
else:
return [points[0][0]]
def main():
""" Allows the user to visualize a convexx hull based on random points. The user
can choose the number of points.
post: displays the points on a graphical window as circles, with line segments
that connect the points that form the convex hull.
"""
print("This program allows the user to visualize a convex hull of random point")
print("The user can choose the number of points from which to draw the convex hull,")
n = int(input("thus enter the number of points: "))
unordered_points = []
width = 800
height = 600
for i in range(n):
unordered_points.append((randrange(width*0.1, width*0.9), randrange(height*0.1, height*0.9)))
convex_hull_lst = convex_hull(unordered_points)
win = GraphWin("Convex Hull Implementation", width, height, autoflush=False)
win.setCoords(0, 0, width, height)
for point in unordered_points:
Circle(Point(point[0], point[1]), 1.5).draw(win)
for i in range(len(convex_hull_lst) - 1):
Line(Point(convex_hull_lst[i][0], convex_hull_lst[i][1]), Point(convex_hull_lst[i + 1][0], convex_hull_lst[i + 1][1])).draw(win)
Line(Point(convex_hull_lst[0][0], convex_hull_lst[0][1]), Point(convex_hull_lst[-1][0], convex_hull_lst[-1][1])).draw(win)
message = Text(Point(width/2, height*0.95), "Click anywhere to quit.")
message.draw(win)
win.getMouse()
win.close()
if __name__ == "__main__":
from graphics import GraphWin, Point, Line, Text, Circle
from random import randrange
main()