-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.h
119 lines (96 loc) · 2.5 KB
/
Network.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* Neural network for a binary classification problem.
*/
#ifndef NETWORK_H
#define NETWORK_H
#include "Neuron.h"
#include "Link.h"
#include "Utils.h"
#include "LinkMatrix.h"
#include "ProblemInfo.h"
#include <QtCore/QList>
#include <QtCore/QMap>
#include <QHash>
class Network
{
public:
explicit Network(int);
explicit Network(const Network *, int);
virtual ~Network();
/*
* Apply an input: the two parameters are the input vector (assumed to be of INPUT_SIZE dimension), and
* the expected class.
*/
void applyInput(double [], int);
/*
* Unique identifier for this network.
*/
int id() const;
/*
* The last output provided by the network.
*/
double output() const;
/*
* The error of the network.
*/
double error() const;
/*
* The average error over a test set.
*/
double averageError() const;
/*
* The number of links
*/
int complexity() const;
/*
* The sparsity computed by the genetic algorithm.
*/
double sparsity() const;
/*
* Returns neurons and links in the network, given their IDs; for the Link, we need the IDs of
* the two neurons connected by it.
*/
Neuron* getNeuron(int) const;
Link* getLink(int, int) const;
void setId(int);
void setAverageError(double);
void setSparsity(double);
void addSparsity(double);
/*
* Performs a mutation on the network.
*/
void mutate(MutationOperator);
/*
* The RPROP+ algorithm.
*/
void updateByRProp();
/*
* Comparison operator.
*/
bool operator== (const Network &);
private:
int m_id;
QList< Neuron* > m_inputNeurons;
QList< Neuron* > m_hiddenNeurons;
QList< Neuron* > m_outputNeurons;
QHash< int, Neuron* > m_neurons; /* all the neurons indexed by ID */
int maxNeuronId; /* the biggest neuron ID currently active (used for mutations) */
LinkMatrix m_connectivity;
double m_lastOutput;
double m_lastError, m_oldError; /* the "previous" error is used for RPROP+ */
double m_averageError;
double m_sparsity;
/*
* Returns a random weight.
*/
double randomWeight();
/*
* Returns a random bias for the new sigmoid neurons.
*/
double randomBias();
void createRandomLink(int, int);
void createBiasLink(Neuron*, Neuron* );
void computeGradients(int);
void applyGaussianMutation();
};
#endif