-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquery_cosine.py
172 lines (131 loc) · 5.06 KB
/
query_cosine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import json
from hazm import *
import hazm
import parsivar
import math
from collections import Counter
import xlrd
import xlsxwriter
hazm_normalaizer = hazm.Normalizer()
tokenizer = parsivar.Tokenizer()
normalizer = parsivar.Normalizer(statistical_space_correction=True, date_normalizing_needed=True,pinglish_conversion_needed=True)
stemmer_hazm = Stemmer()
data_set = 'IR1_7k_news.xlsx'
data_reader = xlrd.open_workbook(data_set)
content = data_reader.sheet_by_index(0)
number_of_rows = content.nrows
f = open('champions.json', encoding='utf-8')
data = json.load(f)
tokens_and_champions = data
f.close()
f = open('tfidf_index_non_positional.json', encoding='utf-8')
data = json.load(f)
non_positional_index = data
f.close()
def calculate_doc_lenght(doc_id) :
temp = data_reader.sheet_by_index(0).cell(int(doc_id), 0).value
temp = hazm_normalaizer.normalize(temp)
tokens = word_tokenize(temp)
tokens = [stemmer_hazm.stem(t) for t in tokens]
length = 0
for t in tokens :
length += (non_positional_index[t][doc_id][1]) ** 2 # non_positional_index[t][doc_id][1] is weight of the t in that doc
return math.sqrt(length)
def query_score (query) :
query_tokens = word_tokenize(query)
query_score = {}
for term, count in Counter(query_tokens).items():
tf = (1 + math.log10(count))
idf = math.log10(number_of_rows/1)
tfidf = tf * idf
query_score[term] = (tfidf)
return query_score
def cosine_score_non_positional(query , k):
scores = dict()
query = hazm_normalaizer.normalize(query)
query_tokens = hazm.word_tokenize(query)
query_scores = query_score(query)
for i in range(len(query_tokens)):
wtq = query_scores[query_tokens[i]]
docs = non_positional_index[stemmer_hazm.stem(query_tokens[i])]
print(docs)
for d in docs :
wtd = docs[d][1]
if d not in scores :
scores[d] = wtq * wtd
else:
scores[d] += wtq * wtd
for d in scores :
scores[d] = scores[d] / calculate_doc_lenght(d)
scores = dict(sorted(scores.items(), key=lambda item: item[1], reverse=True))
print(scores)
k_first = dict(list(scores.items())[0: k])
return k_first
def cosine_score_with_champion (query , k) :
scores = dict()
query = hazm_normalaizer.normalize(query)
query_tokens = hazm.word_tokenize(query)
query_scores = query_score(query)
for i in range(len(query_tokens)):
champions = tokens_and_champions[stemmer_hazm.stem(query_tokens[i])]
wtq = query_scores[query_tokens[i]]
docs = non_positional_index[stemmer_hazm.stem(query_tokens[i])]
print(docs)
for d in champions:
wtd = docs[d][1]
if d not in scores:
scores[d] = wtq * wtd
else:
scores[d] += wtq * wtd
for d in scores:
scores[d] = scores[d] / calculate_doc_lenght(d)
scores = dict(sorted(scores.items(), key=lambda item: item[1], reverse=True))
print(scores)
k_first = dict(list(scores.items())[0: k])
return k_first
def show_answers(answers,query):
file_name = str(query) + ".txt"
f = open(file_name, "a", encoding="utf-8")
normal_query = normalizer.normalize(query)
tokens = tokenizer.tokenize_words(normal_query)
for d in answers:
print("{} : {}".format(d, answers[d]))
relative_sentences = []
title = data_reader.sheet_by_index(0).cell(int(d), 2).value
news_content = hazm_normalaizer.normalize(data_reader.sheet_by_index(0).cell(int(d), 0).value)
sentences = sent_tokenize(str(news_content))
for t in tokens:
for s in sentences:
if stemmer_hazm.stem(t) in s:
if s not in relative_sentences:
relative_sentences.append(s)
print("Title of the news is : {}".format(title))
f.write("Title of the news is : {}\n".format(title))
print("senteces which are relative :")
for s in relative_sentences:
print(s)
f.write("{} \n".format(s))
f.write("-----------------------------------------------------------------------------------------\n")
def make_champion () :
token_and_champions = dict()
for t in non_positional_index :
docs_and_scores = {}
PL = non_positional_index[t]
for d in PL :
docs_and_scores[d] = PL[d][1]
docs_and_scores = dict(sorted(docs_and_scores.items(), key=lambda item: item[1], reverse=True))
champions = dict(list(docs_and_scores.items())[0: 40])
token_and_champions[t] = list(champions.keys())
f = open("champions.json", "w", encoding="utf-8")
json.dump(token_and_champions, f)
f.close()
def main():
# query = input("Enter your query")
# answers = cosine_score_with_champion(query,10)
# show_answers(answers,query)
# make_champion(positional_index)
# make_champion()
print(len(non_positional_index["امیرکبیر"]))
print(tokens_and_champions["امیرکبیر"])
if __name__ == "__main__":
main()