forked from chasebk/code_FLNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm1hl_giang1_script.py
56 lines (49 loc) · 2.14 KB
/
lstm1hl_giang1_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from sklearn.model_selection import ParameterGrid
from model.main.traditional_rnn import Lstm1HL
from utils.IOUtil import read_dataset_file
from utils.SettingPaper import lstm1hl_giang1_paras as param_grid
from utils.SettingPaper import giang1
rv_data = [giang1]
data_file = ["final"]
test_type = "normal" ### normal: for normal test, stability: for n_times test
run_times = None
if test_type == "normal": ### For normal test
run_times = 1
pathsave = "paper/results/final/"
all_model_file_name = "log_models"
elif test_type == "stability": ### For stability test (n times run with the same parameters)
run_times = 15
pathsave = "paper/results/stability/"
all_model_file_name = "stability_lstm1hl"
else:
pass
def train_model(item):
root_base_paras = {
"dataset": dataset,
"data_idx": (0.66, 0, 0.33),
"sliding": item["sliding_window"],
"expand_function": item["expand_function"],
"multi_output": requirement_variables[2],
"output_idx": requirement_variables[3],
"method_statistic": 0, # 0: sliding window, 1: mean, 2: min-mean-max, 3: min-median-max
"log_filename": all_model_file_name,
"path_save_result": pathsave + requirement_variables[4],
"test_type": test_type,
"draw": True,
"print_train": 0 # 0: nothing, else : full detail
}
root_rnn_paras = {
"hidden_sizes": item["hidden_sizes"], "epoch": item["epoch"], "batch_size": item["batch_size"],
"learning_rate": item["learning_rate"], "activations": item["activations"],
"optimizer": item["optimizer"], "loss": item["loss"], "dropouts": item["dropouts"]
}
md = Lstm1HL(root_base_paras=root_base_paras, root_rnn_paras=root_rnn_paras)
md._running__()
for _ in range(run_times):
for loop in range(len(rv_data)):
requirement_variables = rv_data[loop]
filename = requirement_variables[0] + data_file[loop] + ".csv"
dataset = read_dataset_file(filename, requirement_variables[1])
# Create combination of params.
for item in list(ParameterGrid(param_grid)):
train_model(item)