forked from kumar-shridhar/PyTorch-BayesianCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuncertainty_estimation.py
executable file
·184 lines (145 loc) · 6.91 KB
/
uncertainty_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import torch
import numpy as np
import pandas as pd
import seaborn as sns
from PIL import Image
import torchvision
from torch.nn import functional as F
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import data
from main_bayesian import getModel
import config_bayesian as cfg
# CUDA settings
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
mnist_set = None
notmnist_set = None
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((32, 32)),
transforms.ToTensor(),
])
def init_dataset(notmnist_dir):
global mnist_set
global notmnist_set
mnist_set, _, _, _ = data.getDataset('MNIST')
notmnist_set = torchvision.datasets.ImageFolder(root=notmnist_dir)
def get_uncertainty_per_image(model, input_image, T=15, normalized=False):
input_image = input_image.unsqueeze(0)
input_images = input_image.repeat(T, 1, 1, 1)
net_out, _ = model(input_images)
pred = torch.mean(net_out, dim=0).cpu().detach().numpy()
if normalized:
prediction = F.softplus(net_out)
p_hat = prediction / torch.sum(prediction, dim=1).unsqueeze(1)
else:
p_hat = F.softmax(net_out, dim=1)
p_hat = p_hat.detach().cpu().numpy()
p_bar = np.mean(p_hat, axis=0)
temp = p_hat - np.expand_dims(p_bar, 0)
epistemic = np.dot(temp.T, temp) / T
epistemic = np.diag(epistemic)
aleatoric = np.diag(p_bar) - (np.dot(p_hat.T, p_hat) / T)
aleatoric = np.diag(aleatoric)
return pred, epistemic, aleatoric
def get_uncertainty_per_batch(model, batch, T=15, normalized=False):
batch_predictions = []
net_outs = []
batches = batch.unsqueeze(0).repeat(T, 1, 1, 1, 1)
preds = []
epistemics = []
aleatorics = []
for i in range(T): # for T batches
net_out, _ = model(batches[i].cuda())
net_outs.append(net_out)
if normalized:
prediction = F.softplus(net_out)
prediction = prediction / torch.sum(prediction, dim=1).unsqueeze(1)
else:
prediction = F.softmax(net_out, dim=1)
batch_predictions.append(prediction)
for sample in range(batch.shape[0]):
# for each sample in a batch
pred = torch.cat([a_batch[sample].unsqueeze(0) for a_batch in net_outs], dim=0)
pred = torch.mean(pred, dim=0)
preds.append(pred)
p_hat = torch.cat([a_batch[sample].unsqueeze(0) for a_batch in batch_predictions], dim=0).detach().cpu().numpy()
p_bar = np.mean(p_hat, axis=0)
temp = p_hat - np.expand_dims(p_bar, 0)
epistemic = np.dot(temp.T, temp) / T
epistemic = np.diag(epistemic)
epistemics.append(epistemic)
aleatoric = np.diag(p_bar) - (np.dot(p_hat.T, p_hat) / T)
aleatoric = np.diag(aleatoric)
aleatorics.append(aleatoric)
epistemic = np.vstack(epistemics) # (batch_size, categories)
aleatoric = np.vstack(aleatorics) # (batch_size, categories)
preds = torch.cat([i.unsqueeze(0) for i in preds]).cpu().detach().numpy() # (batch_size, categories)
return preds, epistemic, aleatoric
def get_sample(dataset, sample_type='mnist'):
idx = np.random.randint(len(dataset.targets))
if sample_type=='mnist':
sample = dataset.data[idx]
truth = dataset.targets[idx]
else:
path, truth = dataset.samples[idx]
sample = torch.from_numpy(np.array(Image.open(path)))
sample = sample.unsqueeze(0)
sample = transform(sample)
return sample.to(device), truth
def run(net_type, weight_path, notmnist_dir):
init_dataset(notmnist_dir)
layer_type = cfg.layer_type
activation_type = cfg.activation_type
net = getModel(net_type, 1, 10, priors=None, layer_type=layer_type, activation_type=activation_type)
net.load_state_dict(torch.load(weight_path))
net.train()
net.to(device)
fig = plt.figure()
fig.suptitle('Uncertainty Estimation', fontsize='x-large')
mnist_img = fig.add_subplot(321)
notmnist_img = fig.add_subplot(322)
epi_stats_norm = fig.add_subplot(323)
ale_stats_norm = fig.add_subplot(324)
epi_stats_soft = fig.add_subplot(325)
ale_stats_soft = fig.add_subplot(326)
sample_mnist, truth_mnist = get_sample(mnist_set)
pred_mnist, epi_mnist_norm, ale_mnist_norm = get_uncertainty_per_image(net, sample_mnist, T=25, normalized=True)
pred_mnist, epi_mnist_soft, ale_mnist_soft = get_uncertainty_per_image(net, sample_mnist, T=25, normalized=False)
mnist_img.imshow(sample_mnist.squeeze().cpu(), cmap='gray')
mnist_img.axis('off')
mnist_img.set_title('MNIST Truth: {} Prediction: {}'.format(int(truth_mnist), int(np.argmax(pred_mnist))))
sample_notmnist, truth_notmnist = get_sample(notmnist_set, sample_type='notmnist')
pred_notmnist, epi_notmnist_norm, ale_notmnist_norm = get_uncertainty_per_image(net, sample_notmnist, T=25, normalized=True)
pred_notmnist, epi_notmnist_soft, ale_notmnist_soft = get_uncertainty_per_image(net, sample_notmnist, T=25, normalized=False)
notmnist_img.imshow(sample_notmnist.squeeze().cpu(), cmap='gray')
notmnist_img.axis('off')
notmnist_img.set_title('notMNIST Truth: {}({}) Prediction: {}({})'.format(
int(truth_notmnist), chr(65 + truth_notmnist), int(np.argmax(pred_notmnist)), chr(65 + np.argmax(pred_notmnist))))
x = list(range(10))
data = pd.DataFrame({
'epistemic_norm': np.hstack([epi_mnist_norm, epi_notmnist_norm]),
'aleatoric_norm': np.hstack([ale_mnist_norm, ale_notmnist_norm]),
'epistemic_soft': np.hstack([epi_mnist_soft, epi_notmnist_soft]),
'aleatoric_soft': np.hstack([ale_mnist_soft, ale_notmnist_soft]),
'category': np.hstack([x, x]),
'dataset': np.hstack([['MNIST']*10, ['notMNIST']*10])
})
print(data)
sns.barplot(x='category', y='epistemic_norm', hue='dataset', data=data, ax=epi_stats_norm)
sns.barplot(x='category', y='aleatoric_norm', hue='dataset', data=data, ax=ale_stats_norm)
epi_stats_norm.set_title('Epistemic Uncertainty (Normalized)')
ale_stats_norm.set_title('Aleatoric Uncertainty (Normalized)')
sns.barplot(x='category', y='epistemic_soft', hue='dataset', data=data, ax=epi_stats_soft)
sns.barplot(x='category', y='aleatoric_soft', hue='dataset', data=data, ax=ale_stats_soft)
epi_stats_soft.set_title('Epistemic Uncertainty (Softmax)')
ale_stats_soft.set_title('Aleatoric Uncertainty (Softmax)')
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = "PyTorch Uncertainty Estimation b/w MNIST and notMNIST")
parser.add_argument('--net_type', default='lenet', type=str, help='model')
parser.add_argument('--weights_path', default='checkpoints/MNIST/bayesian/model_lenet.pt', type=str, help='weights for model')
parser.add_argument('--notmnist_dir', default='data/notMNIST_small/', type=str, help='weights for model')
args = parser.parse_args()
run(args.net_type, args.weights_path, args.notmnist_dir)