From 533dd36dabc85d5d7cd6dfdb82b3bdc7cbb8c75a Mon Sep 17 00:00:00 2001 From: Ugeun Park <37043543+shashaka@users.noreply.github.com> Date: Thu, 16 Jan 2025 06:59:48 +0900 Subject: [PATCH] Add aug_mix processing layer (#20759) * Add implementation for AugMix * Update implementation for aug_mix * Update description for aug_mix * Fix some issues that was from review --- keras/api/_tf_keras/keras/layers/__init__.py | 1 + keras/api/layers/__init__.py | 1 + keras/src/layers/__init__.py | 1 + .../image_preprocessing/aug_mix.py | 325 ++++++++++++++++++ .../image_preprocessing/aug_mix_test.py | 66 ++++ 5 files changed, 394 insertions(+) create mode 100644 keras/src/layers/preprocessing/image_preprocessing/aug_mix.py create mode 100644 keras/src/layers/preprocessing/image_preprocessing/aug_mix_test.py diff --git a/keras/api/_tf_keras/keras/layers/__init__.py b/keras/api/_tf_keras/keras/layers/__init__.py index 5728ab18730..332dd0796f5 100644 --- a/keras/api/_tf_keras/keras/layers/__init__.py +++ b/keras/api/_tf_keras/keras/layers/__init__.py @@ -139,6 +139,7 @@ from keras.src.layers.preprocessing.discretization import Discretization from keras.src.layers.preprocessing.hashed_crossing import HashedCrossing from keras.src.layers.preprocessing.hashing import Hashing +from keras.src.layers.preprocessing.image_preprocessing.aug_mix import AugMix from keras.src.layers.preprocessing.image_preprocessing.auto_contrast import ( AutoContrast, ) diff --git a/keras/api/layers/__init__.py b/keras/api/layers/__init__.py index b065592a145..12c5a2154af 100644 --- a/keras/api/layers/__init__.py +++ b/keras/api/layers/__init__.py @@ -139,6 +139,7 @@ from keras.src.layers.preprocessing.discretization import Discretization from keras.src.layers.preprocessing.hashed_crossing import HashedCrossing from keras.src.layers.preprocessing.hashing import Hashing +from keras.src.layers.preprocessing.image_preprocessing.aug_mix import AugMix from keras.src.layers.preprocessing.image_preprocessing.auto_contrast import ( AutoContrast, ) diff --git a/keras/src/layers/__init__.py b/keras/src/layers/__init__.py index 59f241cbaf2..c2d1d4d195e 100644 --- a/keras/src/layers/__init__.py +++ b/keras/src/layers/__init__.py @@ -83,6 +83,7 @@ from keras.src.layers.preprocessing.discretization import Discretization from keras.src.layers.preprocessing.hashed_crossing import HashedCrossing from keras.src.layers.preprocessing.hashing import Hashing +from keras.src.layers.preprocessing.image_preprocessing.aug_mix import AugMix from keras.src.layers.preprocessing.image_preprocessing.auto_contrast import ( AutoContrast, ) diff --git a/keras/src/layers/preprocessing/image_preprocessing/aug_mix.py b/keras/src/layers/preprocessing/image_preprocessing/aug_mix.py new file mode 100644 index 00000000000..9dbb37783e5 --- /dev/null +++ b/keras/src/layers/preprocessing/image_preprocessing/aug_mix.py @@ -0,0 +1,325 @@ +import random as py_random + +import keras.src.layers as layers +from keras.src.api_export import keras_export +from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 + BaseImagePreprocessingLayer, +) +from keras.src.random import SeedGenerator +from keras.src.utils import backend_utils + +AUGMENT_LAYERS_ALL = [ + "random_shear", + "random_translation", + "random_rotation", + "random_posterization", + "solarization", + "auto_contrast", + "equalization", + "random_brightness", + "random_color_degeneration", + "random_contrast", + "random_sharpness", +] + +AUGMENT_LAYERS = [ + "random_shear", + "random_translation", + "random_rotation", + "random_posterization", + "solarization", + "auto_contrast", + "equalization", +] + + +@keras_export("keras.layers.AugMix") +class AugMix(BaseImagePreprocessingLayer): + """Performs the AugMix data augmentation technique. + + AugMix aims to produce images with variety while preserving the image + semantics and local statistics. During the augmentation process, + the same augmentation is applied across all images in the batch + in num_chains different ways, with each chain consisting of + chain_depth augmentations. + + Args: + value_range: the range of values the incoming images will have. + Represented as a two number tuple written (low, high). + This is typically either `(0, 1)` or `(0, 255)` depending + on how your preprocessing pipeline is set up. + num_chains: an integer representing the number of different chains to + be mixed, defaults to 3. + chain_depth: an integer representing the maximum number of + transformations to be applied in each chain. The actual number + of transformations in each chain will be sampled randomly + from the range `[0, `chain_depth`]`. Defaults to 3. + factor: The strength of the augmentation as a normalized value + between 0 and 1. Default is 0.3. + alpha: a float value used as the probability coefficients for the + Beta and Dirichlet distributions, defaults to 1.0. + all_ops: Use all operations (including random_brightness, + random_color_degeneration, random_contrast and random_sharpness). + Default is True. + interpolation: The interpolation method to use for resizing operations. + Options include `"nearest"`, `"bilinear"`. Default is `"bilinear"`. + seed: Integer. Used to create a random seed. + + References: + - [AugMix paper](https://arxiv.org/pdf/1912.02781) + - [Official Code](https://github.com/google-research/augmix) + """ + + _USE_BASE_FACTOR = False + _FACTOR_BOUNDS = (0, 1) + + def __init__( + self, + value_range=(0, 255), + num_chains=3, + chain_depth=3, + factor=0.3, + alpha=1.0, + all_ops=True, + interpolation="bilinear", + seed=None, + data_format=None, + **kwargs, + ): + super().__init__(data_format=data_format, **kwargs) + + self.value_range = value_range + self.num_chains = num_chains + self.chain_depth = chain_depth + self._set_factor(factor) + self.alpha = alpha + self.all_ops = all_ops + self.interpolation = interpolation + self.seed = seed + self.generator = SeedGenerator(seed) + + if self.all_ops: + self._augment_layers = AUGMENT_LAYERS_ALL + else: + self._augment_layers = AUGMENT_LAYERS + + self.random_shear = layers.RandomShear( + x_factor=self.factor, + y_factor=self.factor, + interpolation=interpolation, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_translation = layers.RandomTranslation( + height_factor=self.factor, + width_factor=self.factor, + interpolation=interpolation, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_rotation = layers.RandomRotation( + factor=self.factor, + interpolation=interpolation, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.solarization = layers.Solarization( + addition_factor=self.factor, + threshold_factor=self.factor, + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_posterization = layers.RandomPosterization( + factor=max(1, int(8 * self.factor[1])), + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.auto_contrast = layers.AutoContrast( + value_range=self.value_range, data_format=data_format, **kwargs + ) + + self.equalization = layers.Equalization( + value_range=self.value_range, data_format=data_format, **kwargs + ) + + if self.all_ops: + self.random_brightness = layers.RandomBrightness( + factor=self.factor, + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_color_degeneration = layers.RandomColorDegeneration( + factor=self.factor, + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_contrast = layers.RandomContrast( + factor=self.factor, + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + self.random_sharpness = layers.RandomSharpness( + factor=self.factor, + value_range=self.value_range, + seed=self.seed, + data_format=data_format, + **kwargs, + ) + + def build(self, input_shape): + for layer_name in self._augment_layers: + augmentation_layer = getattr(self, layer_name) + augmentation_layer.build(input_shape) + + def _sample_from_dirichlet(self, shape, alpha, seed): + gamma_sample = self.backend.random.gamma( + shape=shape, + alpha=alpha, + seed=seed, + ) + return gamma_sample / self.backend.numpy.sum( + gamma_sample, axis=-1, keepdims=True + ) + + def get_random_transformation(self, data, training=True, seed=None): + if not training: + return None + + if backend_utils.in_tf_graph(): + self.backend.set_backend("tensorflow") + + for layer_name in self._augment_layers: + augmentation_layer = getattr(self, layer_name) + augmentation_layer.backend.set_backend("tensorflow") + + seed = seed or self._get_seed_generator(self.backend._backend) + + chain_mixing_weights = self._sample_from_dirichlet( + [self.num_chains], self.alpha, seed + ) + weight_sample = self.backend.random.beta( + shape=(), + alpha=self.alpha, + beta=self.alpha, + seed=seed, + ) + + chain_transforms = [] + for _ in range(self.num_chains): + depth_transforms = [] + for _ in range(self.chain_depth): + layer_name = py_random.choice(self._augment_layers + [None]) + if layer_name is None: + continue + augmentation_layer = getattr(self, layer_name) + depth_transforms.append( + { + "layer_name": layer_name, + "transformation": ( + augmentation_layer.get_random_transformation( + data, + seed=self._get_seed_generator( + self.backend._backend + ), + ) + ), + } + ) + chain_transforms.append(depth_transforms) + + transformation = { + "chain_mixing_weights": chain_mixing_weights, + "weight_sample": weight_sample, + "chain_transforms": chain_transforms, + } + + return transformation + + def transform_images(self, images, transformation, training=True): + if training: + images = self.backend.cast(images, self.compute_dtype) + + chain_mixing_weights = self.backend.cast( + transformation["chain_mixing_weights"], dtype=self.compute_dtype + ) + weight_sample = self.backend.cast( + transformation["weight_sample"], dtype=self.compute_dtype + ) + chain_transforms = transformation["chain_transforms"] + + aug_images = self.backend.numpy.zeros_like(images) + for idx, chain_transform in enumerate(chain_transforms): + copied_images = self.backend.numpy.copy(images) + for depth_transform in chain_transform: + layer_name = depth_transform["layer_name"] + layer_transform = depth_transform["transformation"] + + augmentation_layer = getattr(self, layer_name) + copied_images = augmentation_layer.transform_images( + copied_images, layer_transform + ) + aug_images += copied_images * chain_mixing_weights[idx] + images = weight_sample * images + (1 - weight_sample) * aug_images + + images = self.backend.numpy.clip( + images, self.value_range[0], self.value_range[1] + ) + + images = self.backend.cast(images, self.compute_dtype) + return images + + def transform_labels(self, labels, transformation, training=True): + return labels + + def transform_bounding_boxes( + self, + bounding_boxes, + transformation, + training=True, + ): + return bounding_boxes + + def transform_segmentation_masks( + self, segmentation_masks, transformation, training=True + ): + return self.transform_images( + segmentation_masks, transformation, training=training + ) + + def compute_output_shape(self, input_shape): + return input_shape + + def get_config(self): + config = { + "value_range": self.value_range, + "num_chains": self.chain_depth, + "chain_depth": self.num_chains, + "factor": self.factor, + "alpha": self.alpha, + "all_ops": self.all_ops, + "interpolation": self.interpolation, + "seed": self.seed, + } + base_config = super().get_config() + return {**base_config, **config} diff --git a/keras/src/layers/preprocessing/image_preprocessing/aug_mix_test.py b/keras/src/layers/preprocessing/image_preprocessing/aug_mix_test.py new file mode 100644 index 00000000000..2513642b68e --- /dev/null +++ b/keras/src/layers/preprocessing/image_preprocessing/aug_mix_test.py @@ -0,0 +1,66 @@ +import numpy as np +import pytest +from tensorflow import data as tf_data + +from keras.src import backend +from keras.src import layers +from keras.src import testing + + +class RandAugmentTest(testing.TestCase): + @pytest.mark.requires_trainable_backend + def test_layer(self): + self.run_layer_test( + layers.AugMix, + init_kwargs={ + "value_range": (0, 255), + "num_chains": 2, + "chain_depth": 2, + "factor": 1, + "alpha": 1.0, + "all_ops": True, + "interpolation": "nearest", + "seed": 43, + "data_format": "channels_last", + }, + input_shape=(8, 3, 4, 3), + supports_masking=False, + expected_output_shape=(8, 3, 4, 3), + ) + + def test_aug_mix_inference(self): + seed = 3481 + layer = layers.AugMix() + + np.random.seed(seed) + inputs = np.random.randint(0, 255, size=(224, 224, 3)) + output = layer(inputs, training=False) + self.assertAllClose(inputs, output) + + def test_random_augment_randomness(self): + data_format = backend.config.image_data_format() + if data_format == "channels_last": + input_data = np.random.random((2, 8, 8, 3)) + else: + input_data = np.random.random((2, 3, 8, 8)) + + layer = layers.AugMix( + num_chains=11, all_ops=True, data_format=data_format + ) + augmented_image = layer(input_data) + + self.assertNotAllClose( + backend.convert_to_numpy(augmented_image), input_data + ) + + def test_tf_data_compatibility(self): + data_format = backend.config.image_data_format() + if data_format == "channels_last": + input_data = np.random.random((2, 8, 8, 3)) + else: + input_data = np.random.random((2, 3, 8, 8)) + layer = layers.AugMix(data_format=data_format) + + ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) + for output in ds.take(1): + output.numpy()