-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbackprop_test.py
171 lines (130 loc) · 4.75 KB
/
backprop_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import matplotlib.pyplot as plt
import torch
import time
from torch import nn
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor, Normalize, Lambda
from torch.utils.data import DataLoader
from tqdm import tqdm
from torchsummary import summary
import matplotlib.pyplot as plt
class BackpropNetwork(torch.nn.Module):
def __init__(self, dims):
super().__init__()
self.layers = []
for d in range(len(dims) - 1):
# self.layers.append(self.linear_layer(dims[d], dims[d+1]))
self.add_module(str(d), self.linear_layer(dims[d], dims[d + 1]))
def linear_layer(self, in_dim, out_dim):
layer = nn.Sequential(
nn.Linear(in_dim, out_dim),
nn.ReLU(inplace=True)
)
return layer
def forward(self, x):
for i, module in enumerate(self.children()):
x = module(x)
return x
def MNIST_loaders(train_batch_size=50, test_batch_size=50):
transform = Compose(
[
ToTensor(),
Normalize((0.1307,), (0.3081,)),
Lambda(lambda x: torch.flatten(x)),
]
)
train_loader = DataLoader(
MNIST("./data/", train=True, download=True, transform=transform),
batch_size=train_batch_size,
shuffle=True,
)
test_loader = DataLoader(
MNIST("./data/", train=False, download=True, transform=transform),
batch_size=test_batch_size,
shuffle=False,
)
return train_loader, test_loader
def calculate_accuracy(y_pred, y):
top_pred = y_pred.argmax(1, keepdim = True)
correct = top_pred.eq(y.view_as(top_pred)).sum()
acc = correct.float() / y.shape[0]
return acc
def training_loop(model, iterator, loss_fn, optimizer, device):
epoch_loss = 0.0
epoch_err = 0.0
model.train()
for x, y in iterator:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
y_hat = model(x)
loss = loss_fn(y_hat, y)
error = 1 - calculate_accuracy(y_hat, y).item()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_err += error
return epoch_loss / len(iterator), epoch_err / len(iterator)
def test_loop(model, iterator, loss_fn, device):
epoch_loss = 0.0
epoch_err = 0.0
model.eval()
with torch.no_grad():
for (x, y) in iterator:
x, y = x.to(device), y.to(device)
y_pred = model(x)
loss = loss_fn(y_pred, y)
error = 1 - calculate_accuracy(y_pred, y).item()
epoch_loss += loss.item()
epoch_err += error
return epoch_loss / len(iterator), epoch_err / len(iterator)
if __name__ == "__main__":
# Define parameters
EPOCHS = 20
BATCH_SIZE=50
TRAIN_BATCH_SIZE = BATCH_SIZE
TEST_BATCH_SIZE = BATCH_SIZE
torch.manual_seed(1234)
# Build train and test loaders
train_loader, test_loader = MNIST_loaders(train_batch_size=TRAIN_BATCH_SIZE, test_batch_size=TEST_BATCH_SIZE)
# Define device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Build network
model = BackpropNetwork([784, 500, 10])
model = model.to(device)
print(summary(model, (1, 784)))
# Define loss function and optimizer
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Record
test_losses = []
test_errors = []
train_losses = []
train_errors = []
# Train / test
for epoch in range(EPOCHS):
print(f"==== EPOCH: {epoch} ====")
start = time.time()
train_loss, train_err = training_loop(model, train_loader, loss, optimizer, device)
train_losses.append(train_loss)
train_errors.append(train_err)
test_loss, test_err = test_loop(model, test_loader, loss, device)
test_losses.append(test_loss)
test_errors.append(test_err)
end = time.time()
elapsed = end - start
print(f"train loss: {train_loss} / error: {train_err} test loss: {test_loss} / error: {test_err}")
print(f"Completed epoch {epoch} in {elapsed} seconds")
fig, axs = plt.subplots(2, 1)
axs[0].plot(range(len(train_losses)), train_losses, label='train loss', color='green')
axs[0].plot(range(len(test_losses)), test_losses, label='test loss', color='red')
axs[0].set_xlabel('epoch')
axs[0].set_ylabel('loss')
axs[0].legend()
axs[1].plot(range(len(train_errors)), train_errors, label='train err', color='green')
axs[1].plot(range(len(test_errors)), test_errors, label='test err', color='red')
axs[1].set_xlabel('epoch')
axs[1].set_ylabel('error')
axs[1].legend()
plt.tight_layout()
plt.show()