forked from aaravpandya/RL-GFootball
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
178 lines (152 loc) · 5.96 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from collections import deque
import numpy as np
import torch as th
device = th.device("cuda" if th.cuda.is_available() else "cpu")
import gym
from gym.spaces import Box, Discrete
from gfootball.env import create_environment
from gfootball.env import observation_preprocessing
from stable_baselines3 import PPO
from stable_baselines3.ppo import CnnPolicy
from stable_baselines3.common import results_plotter
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.env_checker import check_env
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.logger import configure
# import wandb
# wandb.login()
from tqdm import tqdm
scenarios = {0: "academy_empty_goal_close",
1: "academy_empty_goal",
2: "academy_run_to_score",
3: "academy_run_to_score_with_keeper",
4: "academy_pass_and_shoot_with_keeper",
5: "academy_run_pass_and_shoot_with_keeper",
6: "academy_3_vs_1_with_keeper",
7: "academy_corner",
8: "academy_counterattack_easy",
9: "academy_counterattack_hard",
10: "academy_single_goal_versus_lazy",
11: "11_vs_11_kaggle"}
scenario_name = scenarios[6]
class FootballGym(gym.Env):
spec = None
metadata = None
def __init__(self, config=None):
super(FootballGym, self).__init__()
env_name = "academy_empty_goal_close"
rewards = "scoring,checkpoints"
if config is not None:
env_name = config.get("env_name", env_name)
rewards = config.get("rewards", rewards)
self.env = create_environment(
env_name=env_name,
stacked=False,
representation="raw",
rewards = rewards,
write_goal_dumps=False,
write_full_episode_dumps=False,
render=False,
write_video=False,
dump_frequency=1,
logdir=".",
extra_players=None,
number_of_left_players_agent_controls=1,
number_of_right_players_agent_controls=0)
self.action_space = Discrete(19)
self.observation_space = Box(low=0, high=255, shape=(72, 96, 16), dtype=np.uint8)
self.reward_range = (-1, 1)
self.obs_stack = deque([], maxlen=4)
def transform_obs(self, raw_obs):
obs = raw_obs[0]
obs = observation_preprocessing.generate_smm([obs])
if not self.obs_stack:
self.obs_stack.extend([obs] * 4)
else:
self.obs_stack.append(obs)
obs = np.concatenate(list(self.obs_stack), axis=-1)
obs = np.squeeze(obs)
return obs
def reset(self):
self.obs_stack.clear()
obs = self.env.reset()
obs = self.transform_obs(obs)
return obs
def step(self, action):
obs, reward, done, info = self.env.step([action])
obs = self.transform_obs(obs)
return obs, float(reward), done, info
from multiprocessing.connection import Pipe
import numpy as np
from stable_baselines3 import PPO
# from stable_baselines3.common.policies import CnnPolicy
# class ProgressBar(BaseCallback):
# def __init__(self, verbose=0):
# super(ProgressBar, self).__init__(verbose)
# self.pbar = None
# def _on_training_start(self):
# factor = np.ceil(self.locals['total_timesteps'] / self.model.n_steps)
# try:
# n = len(self.training_env.remotes)
# except AttributeError:
# n = len(self.training_env.envs)
# total = int(self.model.n_steps * factor / n)
# self.pbar = tqdm(total=total)
# def _on_rollout_start(self):
# self.pbar.refresh()
# def _on_step(self):
# self.pbar.update(1)
# return True
# def _on_rollout_end(self):
# self.pbar.refresh()
# def _on_training_end(self):
# self.pbar.close()
# self.pbar = None
class SaveCallback(BaseCallback):
def __init__(self, verbose=0):
super(SaveCallback, self).__init__(verbose)
def _on_step(self):
if self.n_calls % 1000 == 0:
self.model.save('ppo_football')
return True
def make_env(config=None, rank=0):
def _init():
env = FootballGym(config)
log_file = os.path.join(".", str(rank))
env = Monitor(env, log_file, allow_early_resets=True)
return env
return _init
if __name__ == "__main__":
test_env = FootballGym({"env_name":scenario_name})
check_env(env=test_env, warn=True)
n_envs = 14
n_steps = 500
config={"env_name":scenario_name}
# train_env = DummyVecEnv([make_env(config, rank=i) for i in range(n_envs)])
train_env = SubprocVecEnv([make_env(config, rank=i) for i in range(n_envs)], start_method='fork')
# train_env = CustomSubprocVecEnv([make_env(config, rank=i) for i in range(n_envs)])
# run = wandb.init(
# # Set the project where this run will be logged
# project="HPML-Project",
# # Track hyperparameters and run metadata
# config={
# 'n_envs':n_envs,
# 'n_steps':n_steps,
# 'env':scenario_name,
# 'policy':'CNN'
# })
# model = PPO(CnnPolicy, train_env, n_steps=n_steps, verbose=1, tensorboard_log='./logs2', device=device)
model = PPO.load("/scratch/ap7641/hpmlproject/ppo_football", train_env, device=device)
tmp_path = "./sb3_log2/"
# set up logger
new_logger = configure(tmp_path, ["csv", "log", "tensorboard"])
model.set_logger(new_logger)
savecallback = SaveCallback()
# progressbar = ProgressBar()
# wandb_logging = WandbLoggingCallback()
total_timesteps = n_steps * n_envs * 500
model.learn(total_timesteps=total_timesteps, progress_bar=True, tb_log_name = '3v1', callback =[savecallback])
model.save("ppo_gfootball")