-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconfig.py
37 lines (33 loc) · 948 Bytes
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
# Basic configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# net = "SETR-PUP"
# net = "SETR-MLA"
# net = "TransUNet-Base"
# net = "TransUNet-Large"
net = "UNet"
# data
data_dir = "./data/cityscapes"
IMG_DIM = 256
CLASS_NUM = 13
# training
use_dice_loss = False # True
lrate = 0.001
momentum = 0.9
print_freq = 50
tensorboard_freq = 20
wdecay = 1e-4
fine_tune_ratio = 0.8
early_stop_tolerance = 10 #4
is_continue = False
batch_size = 16
ckpt_src = "./checkpoints/{0}/best_ckpt.pth".format(net)
iteration_num = 80000
epoch_num = 40
# epochs num is determined based on number of iterations and dataloader length.
# inference
best_ckpt_src = "./checkpoints/{0}/U-Net2.pth".format(net)
inf_img_src = "./data/inference/input/test3.jpeg"
inf_vid_src = "./data/inference/input/test.mp4"
inf_out_img_src = "./data/inference/output/output3_3.jpg"
inf_out_vid_src = "./data/inference/output/output.avi"