-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path002_xor_backprop.py
68 lines (54 loc) · 2.13 KB
/
002_xor_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
#np.random.seed(0)
def sigmoid (x):
return 1/(1 + np.exp(-x))
def sigmoid_derivative(x):
return x * (1 - x)
#Input datasets
inputs = np.array([[0,0],[0,1],[1,0],[1,1]])
expected_output = np.array([[0],[1],[1],[0]])
epochs = 10000
lr = 0.1
inputLayerNeurons, hiddenLayerNeurons, outputLayerNeurons = 2,2,1
#Random weights and bias initialization
hidden_weights = np.random.uniform(size=(inputLayerNeurons,hiddenLayerNeurons))
hidden_bias =np.random.uniform(size=(1,hiddenLayerNeurons))
output_weights = np.random.uniform(size=(hiddenLayerNeurons,outputLayerNeurons))
output_bias = np.random.uniform(size=(1,outputLayerNeurons))
print("Initial hidden weights: ",end='')
print(*hidden_weights)
print("Initial hidden biases: ",end='')
print(*hidden_bias)
print("Initial output weights: ",end='')
print(*output_weights)
print("Initial output biases: ",end='')
print(*output_bias)
#Training algorithm
for _ in range(epochs):
#Forward Propagation
hidden_layer_activation = np.dot(inputs,hidden_weights)
hidden_layer_activation += hidden_bias
hidden_layer_output = sigmoid(hidden_layer_activation)
output_layer_activation = np.dot(hidden_layer_output,output_weights)
output_layer_activation += output_bias
predicted_output = sigmoid(output_layer_activation)
#Backpropagation
error = expected_output - predicted_output
d_predicted_output = error * sigmoid_derivative(predicted_output)
error_hidden_layer = d_predicted_output.dot(output_weights.T)
d_hidden_layer = error_hidden_layer * sigmoid_derivative(hidden_layer_output)
#Updating Weights and Biases
output_weights += hidden_layer_output.T.dot(d_predicted_output) * lr
output_bias += np.sum(d_predicted_output,axis=0,keepdims=True) * lr
hidden_weights += inputs.T.dot(d_hidden_layer) * lr
hidden_bias += np.sum(d_hidden_layer,axis=0,keepdims=True) * lr
print("Final hidden weights: ",end='')
print(*hidden_weights)
print("Final hidden bias: ",end='')
print(*hidden_bias)
print("Final output weights: ",end='')
print(*output_weights)
print("Final output bias: ",end='')
print(*output_bias)
print("\nOutput from neural network after 10,000 epochs: ",end='')
print(*predicted_output)