-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtflex_tpu_device_assignment.py
554 lines (459 loc) · 21.5 KB
/
tflex_tpu_device_assignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""Library of TPU helper functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.tpu.topology import Topology
from tensorflow.python.util.tf_export import tf_export
SINGLE_CORE_ASSIGNMENT = [[[0, 0, 0]]]
def _compute_task_and_cores_to_replicas(core_assignment, topology):
"""Computes a nested dict which maps task and logical core to replicas."""
task_and_cores_to_replicas = {}
for replica in xrange(core_assignment.shape[0]):
for logical_core in xrange(core_assignment.shape[1]):
coordinates = core_assignment[replica, logical_core, :]
task_id = topology.task_ordinal_at_coordinates(coordinates)
if task_id not in task_and_cores_to_replicas:
task_and_cores_to_replicas[task_id] = {}
if logical_core not in task_and_cores_to_replicas[task_id]:
task_and_cores_to_replicas[task_id][logical_core] = set()
task_and_cores_to_replicas[task_id][logical_core].add(replica)
task_to_sorted_replica_id = {}
for task, core_to_replicas in task_and_cores_to_replicas.items():
core_to_sorted_replicas = {}
for core, replicas in core_to_replicas.items():
core_to_sorted_replicas[core] = sorted(replicas)
task_to_sorted_replica_id[task] = core_to_sorted_replicas
return task_to_sorted_replica_id
@tf_export("tpu.experimental.DeviceAssignment")
class DeviceAssignment(object):
"""Mapping from logical cores in a computation to the physical TPU topology.
Prefer to use the `DeviceAssignment.build()` helper to construct a
`DeviceAssignment`; it is easier if less flexible than constructing a
`DeviceAssignment` directly.
"""
def __init__(self, topology, core_assignment):
"""Constructs a `DeviceAssignment` object.
Args:
topology: A `Topology` object that describes the physical TPU topology.
core_assignment: A logical to physical core mapping, represented as a
rank 3 numpy array. See the description of the `core_assignment`
property for more details.
Raises:
ValueError: If `topology` is not `Topology` object.
ValueError: If `core_assignment` is not a rank 3 numpy array.
"""
if not isinstance(topology, Topology):
raise ValueError("topology must be a Topology object, got {}".format(
type(topology)))
core_assignment = np.asarray(core_assignment, dtype=np.int32)
self._topology = topology
if core_assignment.ndim != 3:
raise ValueError("core_assignment must be a rank 3 numpy array, "
"got shape {}".format(core_assignment.shape))
self._num_replicas = core_assignment.shape[0]
self._num_cores_per_replica = core_assignment.shape[1]
if core_assignment.shape[-1] != topology.mesh_rank:
raise ValueError(
"minor dimension of core_assignment must have size equal to topology "
"rank ({}), got shape {}".format(topology.mesh_rank,
core_assignment.shape))
self._core_assignment = core_assignment
self._task_and_cores_to_replicas = _compute_task_and_cores_to_replicas(
self._core_assignment, topology)
@property
def topology(self):
"""A `Topology` that describes the TPU topology."""
return self._topology
@property
def num_cores_per_replica(self):
"""The number of cores per replica."""
return self._num_cores_per_replica
@property
def num_replicas(self):
"""The number of replicas of the computation."""
return self._num_replicas
@property
def core_assignment(self):
"""The logical to physical core mapping.
Returns:
An integer numpy array of rank 3, with shape
`[num_replicas, num_cores_per_replica, topology_rank]`. Maps
(replica, logical core) pairs to physical topology coordinates.
"""
return self._core_assignment
def coordinates(self, replica, logical_core):
"""Returns the physical topology coordinates of a logical core."""
return tuple(self.core_assignment[replica, logical_core, :])
def lookup_replicas(self, task_id, logical_core):
"""Lookup replica ids by task number and logical core.
Args:
task_id: TensorFlow task number.
logical_core: An integer, identifying a logical core.
Returns:
A sorted list of the replicas that are attached to that task and
logical_core.
Raises:
ValueError: If no replica exists in the task which contains the logical
core.
"""
try:
return self._task_and_cores_to_replicas[task_id][logical_core]
except KeyError:
raise ValueError(
"Can not find any replica in task: {} contains logical_core: {} ".
format(task_id, logical_core))
def tpu_ordinal(self, replica=0, logical_core=0):
"""Returns the ordinal of the TPU device assigned to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.tpu_device_ordinal_at_coordinates(coordinates)
def host_device(self, replica=0, logical_core=0, job=None):
"""Returns the CPU device attached to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.cpu_device_name_at_coordinates(coordinates, job=job)
def tpu_device(self, replica=0, logical_core=0, job=None):
"""Returns the name of the TPU device assigned to a logical core."""
coordinates = self.coordinates(replica, logical_core)
return self._topology.tpu_device_name_at_coordinates(coordinates, job=job)
@staticmethod
def build(topology,
computation_shape=None,
computation_stride=None,
num_replicas=1):
return device_assignment(topology, computation_shape, computation_stride,
num_replicas)
def _ring_2d(height, width):
"""Ring-order of a height x width mesh.
For example, in a 4x4 mesh, this returns the following order.
0 -- 1 -- 2 -- 3
| | | |
15-- 6 -- 5 -- 4
| | | |
14-- 7 -- 8 -- 9
| | | |
13-- 12-- 11-- 10
Args:
height: An integer represents the height.
width: An integer represents the width.
Returns:
A list of [y, x] pairs with ring order.
"""
if height == 1:
return [(0, i) for i in range(width)]
if width == 1:
return [(i, 0) for i in range(height)]
if height % 2 != 0:
logging.warning("Odd dimension")
return [(i % height, i // height) for i in range(width * height)]
ret = [(0, 0)]
for i in range(height // 2):
for j in range(1, width):
ret.append((2 * i, j))
for j in range(width - 1, 0, -1):
ret.append((2 * i + 1, j))
for i in range(height - 1, 0, -1):
ret.append((i, 0))
return ret
def device_max_replicas(topology,
computation_shape=None,
computation_stride=None):
"""Computes a device_assignment of a computation across a TPU topology.
Attempts to choose a compact grid of cores for locality.
Returns a `DeviceAssignment` that describes the cores in the topology assigned
to each core of each replica.
`computation_shape` and `computation_stride` values should be powers of 2 for
optimal packing.
Args:
topology: A `Topology` object that describes the TPU cluster topology.
To obtain a TPU topology, evaluate the `Tensor` returned by
`initialize_system` using `Session.run`. Either a serialized
`TopologyProto` or a `Topology` object may be passed. Note: you must
evaluate the `Tensor` first; you cannot pass an unevaluated `Tensor` here.
computation_shape: A rank 1 int32 numpy array with size equal to the
topology rank, describing the shape of the computation's block of cores.
If None, the `computation_shape` is `[1] * topology_rank`.
computation_stride: A rank 1 int32 numpy array of size `topology_rank`,
describing the inter-core spacing of the `computation_shape` cores in the
TPU topology. If None, the `computation_stride` is `[1] * topology_rank`.
num_replicas: The number of computation replicas to run. The replicas will
be packed into the free spaces of the topology.
Returns:
A DeviceAssignment object, which describes the mapping between the logical
cores in each computation replica and the physical cores in the TPU
topology.
Raises:
ValueError: If `topology` is not a valid `Topology` object.
ValueError: If `computation_shape` or `computation_stride` are not 1D int32
numpy arrays with shape [3] where all values are positive.
ValueError: If computation's replicas cannot fit into the TPU topology.
"""
# Deserialize the Topology proto, if it is a string.
if isinstance(topology, bytes):
topology = Topology(serialized=topology)
if not isinstance(topology, Topology):
raise ValueError("`topology` is not a Topology object; got {}".format(
type(topology)))
topology_rank = len(topology.mesh_shape)
mesh_shape = topology.mesh_shape
if computation_shape is None:
computation_shape = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_shape = np.asarray(computation_shape, dtype=np.int32)
if computation_stride is None:
computation_stride = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_stride = np.asarray(computation_stride, dtype=np.int32)
if computation_shape.shape != (topology_rank,):
raise ValueError("computation_shape must have shape [{}]; got {}".format(
topology_rank, computation_shape.shape))
if computation_stride.shape != (topology_rank,):
raise ValueError("computation_stride must have shape [{}]; got {}".format(
topology_rank, computation_stride.shape))
if any(computation_shape < 1):
raise ValueError(
"computation_shape must be positive; got computation_shape={}".format(
computation_shape))
if any(computation_stride < 1):
raise ValueError(
"computation_stride must be positive; got computation_stride={}".format(
computation_stride))
# Computes the physical size of one computation instance.
computation_footprint = computation_shape * computation_stride
if any(computation_footprint > mesh_shape):
raise ValueError(
"computation footprint {} does not fit in TPU topology shape {}".format(
computation_footprint, mesh_shape))
# Computes how many copies of the computation footprint fit in the mesh.
block_counts = mesh_shape // computation_footprint
replica_counts = block_counts * computation_stride
max_replicas = np.prod(replica_counts)
if num_replicas > max_replicas:
raise ValueError(
"requested {} replicas but only {} replicas with shape {} and "
"computation_stride {} fit in a TPU mesh of shape {}".format(
num_replicas, max_replicas, computation_shape, computation_stride,
mesh_shape))
return max_replicas
def device_assignment(topology,
computation_shape=None,
computation_stride=None,
num_replicas=None):
"""Computes a device_assignment of a computation across a TPU topology.
Attempts to choose a compact grid of cores for locality.
Returns a `DeviceAssignment` that describes the cores in the topology assigned
to each core of each replica.
`computation_shape` and `computation_stride` values should be powers of 2 for
optimal packing.
Args:
topology: A `Topology` object that describes the TPU cluster topology.
To obtain a TPU topology, evaluate the `Tensor` returned by
`initialize_system` using `Session.run`. Either a serialized
`TopologyProto` or a `Topology` object may be passed. Note: you must
evaluate the `Tensor` first; you cannot pass an unevaluated `Tensor` here.
computation_shape: A rank 1 int32 numpy array with size equal to the
topology rank, describing the shape of the computation's block of cores.
If None, the `computation_shape` is `[1] * topology_rank`.
computation_stride: A rank 1 int32 numpy array of size `topology_rank`,
describing the inter-core spacing of the `computation_shape` cores in the
TPU topology. If None, the `computation_stride` is `[1] * topology_rank`.
num_replicas: The number of computation replicas to run. The replicas will
be packed into the free spaces of the topology.
Returns:
A DeviceAssignment object, which describes the mapping between the logical
cores in each computation replica and the physical cores in the TPU
topology.
Raises:
ValueError: If `topology` is not a valid `Topology` object.
ValueError: If `computation_shape` or `computation_stride` are not 1D int32
numpy arrays with shape [3] where all values are positive.
ValueError: If computation's replicas cannot fit into the TPU topology.
"""
# Deserialize the Topology proto, if it is a string.
if isinstance(topology, bytes):
topology = Topology(serialized=topology)
if not isinstance(topology, Topology):
raise ValueError("`topology` is not a Topology object; got {}".format(
type(topology)))
topology_rank = len(topology.mesh_shape)
mesh_shape = topology.mesh_shape
if computation_shape is None:
computation_shape = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_shape = np.asarray(computation_shape, dtype=np.int32)
if computation_stride is None:
computation_stride = np.array([1] * topology_rank, dtype=np.int32)
else:
computation_stride = np.asarray(computation_stride, dtype=np.int32)
if computation_shape.shape != (topology_rank,):
raise ValueError("computation_shape must have shape [{}]; got {}".format(
topology_rank, computation_shape.shape))
if computation_stride.shape != (topology_rank,):
raise ValueError("computation_stride must have shape [{}]; got {}".format(
topology_rank, computation_stride.shape))
if any(computation_shape < 1):
raise ValueError(
"computation_shape must be positive; got computation_shape={}".format(
computation_shape))
if any(computation_stride < 1):
raise ValueError(
"computation_stride must be positive; got computation_stride={}".format(
computation_stride))
# Computes the physical size of one computation instance.
computation_footprint = computation_shape * computation_stride
if any(computation_footprint > mesh_shape):
raise ValueError(
"computation footprint {} does not fit in TPU topology shape {}".format(
computation_footprint, mesh_shape))
# Computes how many copies of the computation footprint fit in the mesh.
block_counts = mesh_shape // computation_footprint
replica_counts = block_counts * computation_stride
max_replicas = np.prod(replica_counts)
if num_replicas is None:
num_replicas = max_replicas
if num_replicas > max_replicas:
raise ValueError(
"requested {} replicas but only {} replicas with shape {} and "
"computation_stride {} fit in a TPU mesh of shape {}".format(
num_replicas, max_replicas, computation_shape, computation_stride,
mesh_shape))
def ceil_of_ratio(n, m):
return (n + m - 1) // m
missing_devices = get_missing_devices(topology)
if missing_devices.size == 0:
replica_shape = [0] * topology_rank
if num_replicas > 0:
remaining_replicas = num_replicas
remaining_dims = topology_rank
# Choose dimensions as close to an equal cube as possible,
# in order of increasing dimension size. By visiting dimensions
# in increasing size, we assign the most constrained dimension
# first, so we won't make infeasible choices.
#
# As a secondary sort order, visit the dimensions in reverse
# order. This means we try to use both cores on the same chip
# in preference to two cores on different chips.
for x, ni in sorted(((x, -i) for (i, x) in enumerate(replica_counts))):
i = -ni
target_size = int(math.ceil(remaining_replicas**(1.0 / remaining_dims)))
replica_shape[i] = min(target_size, x)
remaining_replicas = ceil_of_ratio(remaining_replicas, replica_shape[i])
remaining_dims -= 1
assert remaining_replicas == 1 and remaining_dims == 0
# Assigns an offset to each replica such that no two replicas overlap.
replica_offsets = np.full([num_replicas, topology_rank], -1, dtype=np.int32)
# TODO(ylc): Revisit here when topology_rank > 3.
enable_2d_tiling = (
topology_rank == 3 and
computation_shape[-1] == 2 # Only handle 2D case.
and np.prod(computation_stride) == 1 # Ensure no stride.
and num_replicas == max_replicas) # Full replication.
logging.info("enable_2d_tiling: {}".format(enable_2d_tiling))
if enable_2d_tiling:
assignment = []
inner_ring = _ring_2d(computation_shape[0], computation_shape[1])
outer_ring = _ring_2d(replica_shape[0], replica_shape[1])
for replica in xrange(num_replicas):
outer_x, outer_y = outer_ring[replica]
per_replica_assignment = []
for index in xrange(np.prod(computation_shape)):
inner_x, inner_y = inner_ring[index // 2]
px = outer_x * computation_shape[0] + inner_x
py = outer_y * computation_shape[1] + inner_y
pz = index % 2
per_replica_assignment.append([px, py, pz])
assignment.append(per_replica_assignment)
else:
for replica in xrange(num_replicas):
# Chooses a replica number in each axis.
t = replica
pos = []
for dim in replica_shape[::-1]:
pos.append(t % dim)
t //= dim
replica_pos = np.array(pos[::-1], dtype=np.int32)
# Determines where that replica starts in each axis.
outer = replica_pos // computation_stride
inner = replica_pos % computation_stride
replica_offsets[replica, :] = outer * computation_footprint + inner
# Computes a logical core -> physical core mapping for each replica.
indices = [
np.arange(0, computation_shape[i] * computation_stride[i],
computation_stride[i]) for i in xrange(topology_rank)
]
indices = np.concatenate(
[i[..., np.newaxis] for i in np.meshgrid(*indices, indexing="ij")],
axis=-1)
indices = indices.reshape((-1, topology_rank))
assignment = indices + replica_offsets[:, np.newaxis, :]
else:
# We have a slice with missing chips. We define a simple assignment by
# ignoring computation stride. This assignment should enable a consistent
# and correct device assignment on degraded slices. It is optimal when
# weights are not sharded. But this device assignment may be sub-optimal for
# other model parallelism scenarios.
assert np.prod(computation_stride) == 1
# Next, we check if we have sufficient devices.
assert num_replicas * np.prod(
computation_shape) <= topology.num_tasks * topology.num_tpus_per_task
# Map replicas to physical devices in task order.
device_coordinates = topology.device_coordinates
assignment = []
devices_per_replica = np.prod(computation_shape)
for rindex in xrange(num_replicas):
replica_assignment = []
for index in xrange(devices_per_replica):
logical_id = rindex * devices_per_replica + index
# Pick logical cores in task order
task = logical_id // topology.num_tpus_per_task
device = logical_id % topology.num_tpus_per_task
# Append physical cores to the replica assignment
replica_assignment.append(device_coordinates[task, device, :])
assignment.append(replica_assignment)
return DeviceAssignment(topology, core_assignment=assignment)
def invert_topology(topology):
"""Inverts a [task,device,axis] topology to [x,y,z] -> task/device maps."""
tasks = np.full(list(topology.mesh_shape), -1, dtype=np.int32)
devices = np.full(list(topology.mesh_shape), -1, dtype=np.int32)
for task in xrange(topology.device_coordinates.shape[0]):
for device in xrange(topology.device_coordinates.shape[1]):
x, y, z = topology.device_coordinates[task, device, :]
tasks[x, y, z] = task
devices[x, y, z] = device
return tasks, devices
def get_missing_devices(topology):
topology_tasks, topology_devices = invert_topology(topology)
return np.argwhere(topology_tasks < 0)
def is_power_of_2(n):
return np.log2(128).is_integer()
#>>> topology.mesh_shape
#array([ 8, 16, 2], dtype=int32) # TPUv2-256
#array([ 8, 8, 2], dtype=int32) # TPUv2-128
#array([ 4, 4, 2], dtype=int32) # TPUv2-32
#array([ 2, 2, 2], dtype=int32) # TPUv2-8
def device_partition(topology, num_replicas):
if not is_power_of_2(num_replicas):
raise ValueError("Expected power of 2, got {}".format(num_replicas))
if len(topology.mesh_shape) != 3:
raise ValueError("Expected topology.mesh_shape to be rank 3, got rank {}".format(len(topology.mesh_shape)))
mesh_shape = topology.mesh_shape.copy()
num_cores = np.prod(mesh_shape)
i = 1
while num_replicas > 1:
mesh_shape[i] //= 2
assert mesh_shape[i] > 0
i = (i + 1) % 2
if mesh_shape[i] == 1:
i = 2
num_replicas //= 2
return mesh_shape
def spatial_partition(topology, factor=1):
num_cores = np.prod(topology.mesh_shape)
if num_cores % factor != 0:
raise ValueError("Expected num_cores({}) to be divisible by factor({})".format(num_cores, factor))
num_replicas = num_cores // factor
computation_shape = device_partition(topology, num_replicas)
computation_stride = [1] * len(topology.mesh_shape)
return device_assignment(topology, computation_shape=computation_shape, computation_stride=computation_stride, num_replicas=num_replicas)