-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generator.py
194 lines (161 loc) · 6.46 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import collections
import os
import tensorflow as tf
from deeplab import common
from deeplab import input_preprocess
DatasetDescriptor = collections.namedtuple(
'DatasetDescriptor',
[
'splits_to_sizes', # Splits of the dataset into training, val and test.
'num_classes', # Number of semantic classes, including the
# background class (if exists). For example, there
# are 20 foreground classes + 1 background class in
# the PASCAL VOC 2012 dataset. Thus, we set
# num_classes=21.
'ignore_label', # Ignore label value.
])
_DATASETS_INFORMATION = {
'cityscapes': _CITYSCAPES_INFORMATION,
'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
'ade20k': _ADE20K_INFORMATION,
'paper':_PAPER_INFORMATION ,
}
_FILE_PATTERN = '%s-*'
def get_cityscapes_dataset_name():
return 'cityscapes'
class Dataset(object):
def __init__(self,
dataset_name,
split_name,
dataset_dir,
batch_size,
crop_size,
min_resize_value=None,
max_resize_value=None,
resize_factor=None,
min_scale_factor=1.,
max_scale_factor=1.,
scale_factor_step_size=0,
model_variant=None,
num_readers=1,
is_training=False,
should_shuffle=False,
should_repeat=False):
if dataset_name not in _DATASETS_INFORMATION:
raise ValueError('The specified dataset is not supported yet.')
self.dataset_name = dataset_name
splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes
if split_name not in splits_to_sizes:
raise ValueError('data split name %s not recognized' % split_name)
if model_variant is None:
tf.logging.warning('Please specify a model_variant. See '
'feature_extractor.network_map for supported model '
'variants.')
self.split_name = split_name
self.dataset_dir = dataset_dir
self.batch_size = batch_size
self.crop_size = crop_size
self.min_resize_value = min_resize_value
self.max_resize_value = max_resize_value
self.resize_factor = resize_factor
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.scale_factor_step_size = scale_factor_step_size
self.model_variant = model_variant
self.num_readers = num_readers
self.is_training = is_training
self.should_shuffle = should_shuffle
self.should_repeat = should_repeat
self.num_of_classes = _DATASETS_INFORMATION[self.dataset_name].num_classes
self.ignore_label = _DATASETS_INFORMATION[self.dataset_name].ignore_label
def _parse_function(self, example_proto):
def _decode_image(content, channels):
return tf.cond(
tf.image.is_jpeg(content),
lambda: tf.image.decode_jpeg(content, channels),
lambda: tf.image.decode_png(content, channels))
features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=0),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=0),
'image/segmentation/class/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/segmentation/class/format':
tf.FixedLenFeature((), tf.string, default_value='png'),
}
parsed_features = tf.parse_single_example(example_proto, features)
image = _decode_image(parsed_features['image/encoded'], channels=3)
label = None
if self.split_name != common.TEST_SET:
label = _decode_image(
parsed_features['image/segmentation/class/encoded'], channels=1)
image_name = parsed_features['image/filename']
if image_name is None:
image_name = tf.constant('')
sample = {
common.IMAGE: image,
common.IMAGE_NAME: image_name,
common.HEIGHT: parsed_features['image/height'],
common.WIDTH: parsed_features['image/width'],
}
if label is not None:
if label.get_shape().ndims == 2:
label = tf.expand_dims(label, 2)
elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1:
pass
else:
raise ValueError('Input label shape must be [height, width], or '
'[height, width, 1].')
label.set_shape([None, None, 1])
sample[common.LABELS_CLASS] = label
return sample
def _preprocess_image(self, sample):
image = sample[common.IMAGE]
label = sample[common.LABELS_CLASS]
original_image, image, label = input_preprocess.preprocess_image_and_label(
image=image,
label=label,
crop_height=self.crop_size[0],
crop_width=self.crop_size[1],
min_resize_value=self.min_resize_value,
max_resize_value=self.max_resize_value,
resize_factor=self.resize_factor,
min_scale_factor=self.min_scale_factor,
max_scale_factor=self.max_scale_factor,
scale_factor_step_size=self.scale_factor_step_size,
ignore_label=self.ignore_label,
is_training=self.is_training,
model_variant=self.model_variant)
sample[common.IMAGE] = image
if not self.is_training:
sample[common.ORIGINAL_IMAGE] = original_image
if label is not None:
sample[common.LABEL] = label
sample.pop(common.LABELS_CLASS, None)
return sample
def get_one_shot_iterator(self):
files = self._get_all_files()
dataset = (
tf.data.TFRecordDataset(files, num_parallel_reads=self.num_readers)
.map(self._parse_function, num_parallel_calls=self.num_readers)
.map(self._preprocess_image, num_parallel_calls=self.num_readers))
if self.should_shuffle:
dataset = dataset.shuffle(buffer_size=100)
if self.should_repeat:
dataset = dataset.repeat()
else:
dataset = dataset.repeat(1)
dataset = dataset.batch(self.batch_size).prefetch(self.batch_size)
return dataset.make_one_shot_iterator()
def _get_all_files(self):
file_pattern = _FILE_PATTERN
file_pattern = os.path.join(self.dataset_dir,
file_pattern % self.split_name)
return tf.gfile.Glob(file_pattern)