Skip to content

Latest commit

 

History

History
209 lines (143 loc) · 12.5 KB

README.md

File metadata and controls

209 lines (143 loc) · 12.5 KB

LexicMap: efficient sequence alignment against millions of prokaryotic genomes​

Latest Version Anaconda Cloud Cross-platform license

LexicMap is a nucleotide sequence alignment tool for efficiently querying gene, plasmid, viral, or long-read sequences against up to millions of prokaryotic genomes.

Documents: https://bioinf.shenwei.me/LexicMap

Preprint:

Wei Shen and Zamin Iqbal. (2024) LexicMap: efficient sequence alignment against millions of prokaryotic genomes. bioRxiv. https://doi.org/10.1101/2024.08.30.610459

Features

  1. LexicMap is scalable to up to millions of prokaryotic genomes.
  2. The sensitivity of LexicMap is comparable with Blastn.
  3. The alignment is fast and memory-efficient.
  4. LexicMap is easy to install, we provide binary files with no dependencies for Linux, Windows, MacOS (x86 and arm CPUs).
  5. LexicMap is easy to use (tutorials and usages). Both tabular and Blast-style output formats are available.
  6. Besides, we provide several commands to explore the index data and extract indexed subsequences.

Introduction

Motivation: Alignment against a database of genomes is a fundamental operation in bioinformatics, popularised by BLAST. However, given the increasing rate at which genomes are sequenced, existing tools struggle to scale.

  1. Existing full alignment tools face challenges of high memory consumption and slow speeds.
  2. Alignment-free large-scale sequence searching tools only return the matched genomes, without the vital positional information for downstream analysis.
  3. Prefilter+Align strategies have the sensitivity issue in the prefiltering step.

Methods: (algorithm overview)

  1. An improved version of the sequence sketching method LexicHash is adopted to compute alignment seeds accurately and efficiently.
    1. We solved the sketching deserts problem of LexicHash seeds to provide a window guarantee.
    2. We added the support of suffix matching of seeds, making seeds much more tolerant to mutations. Any 31-bp seed with a common ≥15 bp prefix or suffix can be matched, which means seeds are immune to any single SNP.
  2. A hierarchical index enables fast and low-memory variable-length seed matching (prefix + suffix matching).
  3. A pseudo alignment algorithm is used to find similar sequence regions from chaining results for alignment.
  4. A reimplemented Wavefront alignment algorithm is used for base-level alignment.

Results:

  1. LexicMap enables efficient indexing and searching of both RefSeq+GenBank and the AllTheBacteria datasets (2.3 and 1.9 million prokaryotic assemblies respectively). Running at this scale has previously only been achieved by Phylign (previously called mof-search), which compresses genomes with phylogenetic information and provides searching (prefiltering with COBS and alignment with minimap2).

  2. For searching in all 2,340,672 Genbank+Refseq prokaryotic genomes, Blastn is unable to run with this dataset on common servers as it requires >2000 GB RAM. (see performance).

    With LexicMap v0.4.0 (48 CPUs),

    Query Genome hits Time RAM
    A 1.3-kb marker gene 37,164 36 s 4.1 GB
    A 1.5-kb 16S rRNA 1,949,496 10 m 41 s 14.1 GB
    A 52.8-kb plasmid 544,619 19 m 20 s 19.3 GB
    1003 AMR genes 25,702,419 187 m 40 s 55.4 GB

More documents: https://bioinf.shenwei.me/LexicMap.

Quick start

Building an index (see the tutorial of building an index).

# From a directory with multiple genome files
lexicmap index -I genomes/ -O db.lmi

# From a file list with one file per line
lexicmap index -X files.txt -O db.lmi

Querying (see the tutorial of searching).

# For short queries like genes or long reads, returning top N hits.
lexicmap search -d db.lmi query.fasta -o query.fasta.lexicmap.tsv \
    --min-qcov-per-hsp 70 --min-qcov-per-genome 70  --top-n-genomes 1000

# For longer queries like plasmids, returning all hits.
lexicmap search -d db.lmi query.fasta -o query.fasta.lexicmap.tsv \
    --min-qcov-per-hsp 0  --min-qcov-per-genome 0   --top-n-genomes 0

Sample output (queries are a few Nanopore Q20 reads). See output format details.

query                qlen   hits   sgenome           sseqid          qcovGnm   hsp   qcovHSP   alenHSP   pident    gaps   qstart   qend   sstart    send      sstr   slen
------------------   ----   ----   ---------------   -------------   -------   ---   -------   -------   -------   ----   ------   ----   -------   -------   ----   -------
ERR5396170.1000016   740    1      GCF_013394085.1   NZ_CP040910.1   89.595    1     89.595    663       99.246    0      71       733    13515     14177     +      1887974
ERR5396170.1000000   698    1      GCF_001457615.1   NZ_LN831024.1   85.673    1     85.673    603       98.010    5      53       650    4452083   4452685   +      6316979
ERR5396170.1000017   516    1      GCF_013394085.1   NZ_CP040910.1   94.574    1     94.574    489       99.591    2      27       514    293509    293996    +      1887974
ERR5396170.1000012   848    1      GCF_013394085.1   NZ_CP040910.1   95.165    1     95.165    811       97.411    7      22       828    190329    191136    -      1887974
ERR5396170.1000038   1615   1      GCA_000183865.1   CM001047.1      64.706    1     60.000    973       95.889    13     365      1333   88793     89756     -      2884551
ERR5396170.1000038   1615   1      GCA_000183865.1   CM001047.1      64.706    2     4.706     76        98.684    0      266      341    89817     89892     -      2884551
ERR5396170.1000036   1159   1      GCF_013394085.1   NZ_CP040910.1   95.427    1     95.427    1107      99.729    1      32       1137   1400097   1401203   +      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    1     86.486    707       99.151    3      104      807    242235    242941    -      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    2     86.486    707       98.444    3      104      807    1138777   1139483   +      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    3     84.152    688       98.983    4      104      788    154620    155306    -      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    4     84.029    687       99.127    3      104      787    32477     33163     +      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    5     72.727    595       98.992    3      104      695    1280183   1280777   +      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    6     11.671    95        100.000   0      693      787    1282480   1282574   +      1887974
ERR5396170.1000031   814    4      GCF_013394085.1   NZ_CP040910.1   86.486    7     82.064    671       99.106    3      120      787    1768782   1769452   +      1887974

CIGAR string, aligned query and subject sequences can be outputted as extra columns via the flag -a/--all.

# Extracting similar sequences for a query gene.

# search matches with query coverage >= 90%
lexicmap search -d gtdb_complete.lmi/ b.gene_E_faecalis_SecY.fasta -o results.tsv \
    --min-qcov-per-hsp 90 --all

# extract matched sequences as FASTA format
sed 1d results.tsv | awk -F'\t' '{print ">"$5":"$14"-"$15":"$16"\n"$20;}' \
    | seqkit seq -g > results.fasta

seqkit head -n 1 results.fasta | head -n 3
>NZ_JALSCK010000007.1:39224-40522:-
TTGTTCAAGCTATTAAAGAACGCCTTTAAAGTCAAAGACATTAGATCAAAAATCTTATTT
ACAGTTTTAATCTTGTTTGTATTTCGCCTAGGTGCGCACATTACTGTGCCCGGGGTGAAT

Export blast-style format:

# here, we only align <=200 bp queries and show one low-similarity result.

$ seqkit seq -g -M 200 q.long-reads.fasta.gz \
    | lexicmap search -d demo.lmi/ -a \
    | csvtk filter2 -t -f '$pident >80 && $pident < 90' \
    | csvtk head -t -n 1 \
    | lexicmap utils 2blast --kv-file-genome ass2species.map

Query = GCF_003697165.2_r40
Length = 186

[Subject genome #1/2] = GCF_002950215.1 Shigella flexneri
Query coverage per genome = 88.710%

>NZ_CP026788.1 
Length = 4659463

 HSP #1
 Query coverage per seq = 88.710%, Aligned length = 168, Identities = 89.286%, Gaps = 5
 Query range = 13-177, Subject range = 1124816-1124981, Strand = Plus/Plus

Query  13       CGGAAACTGAAACA-CCAGATTCTACGATGATTATGATGATTTA-TGCTTTCTTTACTAA  70
                |||||||||||||| |||||||||| | |||||||||||||||| |||||||||| ||||
Sbjct  1124816  CGGAAACTGAAACAACCAGATTCTATGTTGATTATGATGATTTAATGCTTTCTTTGCTAA  1124875

Query  71       AAAGTAAGCGGCCAAAAAAATGAT-AACACCTGTAATGAGTATCAGAAAAGACACGGTAA  129
                ||    |||||||||||||||||| |||||||||||||||||||||||||||||||||||
Sbjct  1124876  AA--GCAGCGGCCAAAAAAATGATTAACACCTGTAATGAGTATCAGAAAAGACACGGTAA  1124933

Query  130      GAAAACACTCTTTTGGATACCTAGAGTCTGATAAGCGATTATTCTCTC  177
                 || |||||||||    |||||  ||||||||||||||||||||||||
Sbjct  1124934  AAAGACACTCTTTGAAGTACCTGAAGTCTGATAAGCGATTATTCTCTC  1124981

Learn more tutorials and usages.

Performance

See performance.

Installation

LexicMap is implemented in Go programming language, executable binary files for most popular operating systems are freely available in release page.

Or install with conda:

conda install -c bioconda lexicmap

We also provide pre-release binaries, with new features and improvements.

Algorithm overview

LexicMap overview

Citation

Wei Shen and Zamin Iqbal. (2024) LexicMap: efficient sequence alignment against millions of prokaryotic genomes. bioRxiv. https://doi.org/10.1101/2024.08.30.610459

Terminology differences

  • In the LexicMap source code and command line options, the term "mask" is used, following the terminology in the LexicHash paper.
  • In the LexicMap manuscript, however, we use "probe" as it is easier to understand. Because these masks, which consist of thousands of k-mers and capture k-mers from sequences through prefix matching, function similarly to DNA probes in molecular biology.

Support

Please open an issue to report bugs, propose new functions or ask for help.

License

MIT License

Related projects