- Python: 3.6, 3.7
- Python packages: numpy, imageio and pyyaml
- TensorFlow >= 2.6.0 + CUDA cuDNN
- GPU for training (e.g., Nvidia GeForce RTX 2080)
- Download REDS dataset and modify the
data_dir
in config.yml.
To train the model, use the following command:
python run.py --process train --config_path config.yml
After training, the checkpoints will be produced in log_dir
.
To valid the model, use the following command:
python run.py --process test --config_path config.yml
After validation, the output images will be produced in log_dir/output
.
To generate testing outputs, use the following command:
python generate_output.py --model_path model/mobile_rrn.py --model_name MobileRRN --ckpt_path snapshot/ckpt-98 --data_dir /data/dataset/aim22/reds/test/test_sharp_bicubic/X4/ --output_dir results
After testing, the output images will be produced in results
.
To convert the keras model to tflite, use the following command:
python convert.py --model_path model/mobile_rrn.py --model_name MobileRRN --input_shapes 1,320,180,9:1,320,180,32 --ckpt_path snapshot/ckpt-98 --output_tflite tflite/model.tflite
If our code helps your research or work, please consider citing our paper.
@article{lian2022sliding,
title={Sliding Window Recurrent Network for Efficient Video Super-Resolution},
author={Lian, Wenyi and Lian, Wenjing},
journal={arXiv preprint arXiv:2208.11608},
year={2022}
}