-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgru.py
187 lines (147 loc) · 7.08 KB
/
gru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
from numba import jit
EPOCH = 1000
LEARNING_RATE = 0.1
OUTPUT_ROUND = 50
SEQUENCE_LEN = 50
class GRU(object):
def __init__(self, text):
vocab_size = len(sorted(list(set(text))))
self.text = text
self.h_size = vocab_size # hidden layer size
self.vocab_size = vocab_size # types of chars
self.Wz = np.random.rand(self.h_size, vocab_size) * 0.1 - 0.05
self.Uz = np.random.rand(self.h_size, self.h_size) * 0.1 - 0.05
self.bz = np.zeros((self.h_size, 1))
self.Wr = np.random.rand(self.h_size, vocab_size) * 0.1 - 0.05
self.Ur = np.random.rand(self.h_size, self.h_size) * 0.1 - 0.05
self.br = np.zeros((self.h_size, 1))
self.Wh = np.random.rand(self.h_size, vocab_size) * 0.1 - 0.05
self.Uh = np.random.rand(self.h_size, self.h_size) * 0.1 - 0.05
self.bh = np.zeros((self.h_size, 1))
self.Wy = np.random.rand(vocab_size, self.h_size) * 0.1 - 0.05
self.by = np.zeros((vocab_size, 1))
@jit
def forward(self, data, target, hprev, output=False):
# hprev is for recursively train the model.
# Each substring is trained as a part of the whole string.
x, z, r, h_hat, h, y, p = {}, {}, {}, {}, {-1: hprev}, {}, {}
total_loss = 0
ixes = []
for char in range(len(data)):
# Set up one-hot encoded input
x[char] = np.zeros((self.vocab_size, 1))
x[char][data[char]] = 1
z[char] = sigmoid(np.dot(self.Wz, x[char]) + np.dot(self.Uz, h[char - 1]) + self.bz)
r[char] = sigmoid(np.dot(self.Wr, x[char]) + np.dot(self.Ur, h[char - 1]) + self.br)
h_hat[char] = tanh(np.dot(self.Wh, x[char]) + np.dot(self.Uh, np.multiply(r[char], h[char - 1])) + self.bh)
h[char] = np.multiply(z[char], h[char - 1]) + np.multiply((1 - z[char]), h_hat[char])
y[char] = np.dot(self.Wy, h[char]) + self.by
p[char] = softmax(y[char])
total_loss -= np.sum(np.log(p[char][target[char]]))
if output:
ix = np.random.choice(range(self.vocab_size), p=p[char].ravel())
ixes.append(ix)
return x, z, r, h_hat, h, y, p, total_loss, ixes
@jit
def backward(self, data, target, hprev, output=False):
x, z, r, h_hat, h, y, p, loss, out = self.forward(data, target, hprev, output)
dWy, dWh, dWr, dWz = np.zeros_like(self.Wy), np.zeros_like(self.Wh), np.zeros_like(self.Wr), np.zeros_like(
self.Wz)
dUh, dUr, dUz = np.zeros_like(self.Uh), np.zeros_like(self.Ur), np.zeros_like(self.Uz)
dby, dbh, dbr, dbz = np.zeros_like(self.by), np.zeros_like(self.bh), np.zeros_like(self.br), np.zeros_like(
self.bz)
dhnext = np.zeros_like(h[0])
for char in reversed(range(len(data))):
dy = np.copy(p[char])
dy[target[char]] -= 1
dWy += np.dot(dy, h[char].transpose())
dby += dy
dh = np.dot(self.Wy.transpose(), dy) + dhnext
dh_hat = np.multiply(dh, (1 - z[char]))
dh_hat_l = dh_hat * tanh(h_hat[char], derivative=True)
dWh += np.dot(dh_hat_l, x[char].transpose())
dUh += np.dot(dh_hat_l, np.multiply(r[char], h[char - 1]).transpose())
dbh += dh_hat_l
drhp = np.dot(self.Uh.transpose(), dh_hat_l)
dr = np.multiply(drhp, h[char - 1])
dr_l = dr * sigmoid(r[char], derivative=True)
dWr += np.dot(dr_l, x[char].transpose())
dUr += np.dot(dr_l, h[char - 1].transpose())
dbr += dr_l
dz = np.multiply(dh, h[char - 1] - h_hat[char])
dz_l = dz * sigmoid(z[char], derivative=True)
dWz += np.dot(dz_l, x[char].transpose())
dUz += np.dot(dz_l, h[char - 1].transpose())
dbz += dz_l
dh_fz_inner = np.dot(self.Uz.transpose(), dz_l)
dh_fz = np.multiply(dh, z[char])
dh_fhh = np.multiply(drhp, r[char])
dh_fr = np.dot(self.Ur.transpose(), dr_l)
dhnext = dh_fz_inner + dh_fz + dh_fhh + dh_fr
return loss, dWy, dWh, dWr, dWz, dUh, dUr, dUz, dby, dbh, dbr, dbz, h[len(data) - 1], out
def train(self, eta):
chars = sorted(list(set(self.text)))
char_to_ix = {ch: i for i, ch in enumerate(chars)}
ix_to_char = {i: ch for i, ch in enumerate(chars)}
mdWy, mdWh, mdWr, mdWz = np.zeros_like(self.Wy), np.zeros_like(self.Wh), np.zeros_like(self.Wr), np.zeros_like(
self.Wz)
mdUh, mdUr, mdUz = np.zeros_like(self.Uh), np.zeros_like(self.Ur), np.zeros_like(self.Uz)
mdby, mdbh, mdbr, mdbz = np.zeros_like(self.by), np.zeros_like(self.bh), np.zeros_like(self.br), np.zeros_like(
self.bz)
smooth_loss = -np.log(1.0 / self.vocab_size) * len(self.text)
for epoch in range(EPOCH):
count = 0
hprev = np.zeros((self.vocab_size, 1))
for seq_ix in range(0, len(self.text) - SEQUENCE_LEN - 1, SEQUENCE_LEN):
count += 1
data = [char_to_ix[ch] for ch in self.text[seq_ix:seq_ix + SEQUENCE_LEN]]
target = [char_to_ix[ch] for ch in self.text[seq_ix + 1:seq_ix + 1 + SEQUENCE_LEN]]
if count % OUTPUT_ROUND == 0:
loss, dWy, dWh, dWr, dWz, dUh, dUr, dUz, dby, dbh, dbr, dbz, hprev, sample = \
self.backward(data, target, hprev, True)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
print(f'Epoch {epoch}, round {count}, Loss: {loss}, Smooth loss: {smooth_loss}')
print(''.join(ix_to_char[ix] for ix in sample))
print('------')
else:
loss, dWy, dWh, dWr, dWz, dUh, dUr, dUz, dby, dbh, dbr, dbz, hprev, _ = \
self.backward(data, target, hprev)
for param, dparam, mem in zip(
[self.Wy, self.Wh, self.Wr, self.Wz, self.Uh, self.Ur, self.Uz, self.by, self.bh, self.br,
self.bz],
[dWy, dWh, dWr, dWz, dUh, dUr, dUz, dby, dbh, dbr, dbz],
[mdWy, mdWh, mdWr, mdWz, mdUh, mdUr, mdUz, mdby, mdbh, mdbr, mdbz]):
np.clip(dparam, -5, 5, out=dparam)
mem += dparam * dparam
param += -eta * dparam / np.sqrt(mem + 1e-8)
@jit
def sigmoid(x, derivative=False):
s = 1 / (1 + np.exp(-x))
if derivative:
return s * (1 - s)
else:
return s
@jit
def softmax(x, derivative=False):
if derivative:
return x * (1 - x)
else:
e = np.exp(x - np.max(x))
s = e / np.sum(e)
return s
@jit
def tanh(x, derivative=False):
if derivative:
return 1 - x ** 2
else:
return np.tanh(x)
@jit
def cross_entropy_loss(out, label):
return -np.sum([l * np.nan_to_num(np.log(y)) for y, l in zip(out, label)])
def main():
data = open('dataset/JaneEyre.txt', 'r').read()
model = GRU(data)
model.train(LEARNING_RATE)
if __name__ == '__main__':
main()