-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator.py
71 lines (53 loc) · 2.03 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from torch import nn
from disvae.utils.initialization import weights_init
class Discriminator(nn.Module):
def __init__(self,
neg_slope=0.2,
latent_dim=10,
hidden_units=1000):
"""Discriminator proposed in [1].
Parameters
----------
neg_slope: float
Hyperparameter for the Leaky ReLu
latent_dim : int
Dimensionality of latent variables.
hidden_units: int
Number of hidden units in the MLP
Model Architecture
------------
- 6 layer multi-layer perceptron, each with 1000 hidden units
- Leaky ReLu activations
- Output 2 logits
References:
[1] Kim, Hyunjik, and Andriy Mnih. "Disentangling by factorising."
arXiv preprint arXiv:1802.05983 (2018).
"""
super(Discriminator, self).__init__()
# Activation parameters
self.neg_slope = neg_slope
self.leaky_relu = nn.LeakyReLU(self.neg_slope, True)
# Layer parameters
self.z_dim = latent_dim
self.hidden_units = hidden_units
# theoretically 1 with sigmoid but gives bad results => use 2 and softmax
out_units = 2
# Fully connected layers
self.lin1 = nn.Linear(self.z_dim, hidden_units)
self.lin2 = nn.Linear(hidden_units, hidden_units)
self.lin3 = nn.Linear(hidden_units, hidden_units)
self.lin4 = nn.Linear(hidden_units, hidden_units)
self.lin5 = nn.Linear(hidden_units, hidden_units)
self.lin6 = nn.Linear(hidden_units, out_units)
self.reset_parameters()
def forward(self, z):
# Fully connected layers with leaky ReLu activations
z = self.leaky_relu(self.lin1(z))
z = self.leaky_relu(self.lin2(z))
z = self.leaky_relu(self.lin3(z))
z = self.leaky_relu(self.lin4(z))
z = self.leaky_relu(self.lin5(z))
z = self.lin6(z)
return z
def reset_parameters(self):
self.apply(weights_init)