-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathslowly_changing_regression.py
94 lines (78 loc) · 3.05 KB
/
slowly_changing_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import sys
import json
import torch
import pickle
import argparse
from tqdm import tqdm
from lop.nets.fix_ltu_net import FixLTUNet
def generate_problem_data(
flip_after=10000,
data_file='data/env_data/0',
num_data_points=1000*100,
num_inputs=20,
num_target_features=20,
num_flipping_bits=None,
beta=0.75,
flip_one=False,
):
"""
Generates data for one run on the slowly changing regression problem
"""
target_network = FixLTUNet(
num_inputs=num_inputs,
num_features=num_target_features,
beta=beta,
)
num_flips = int(num_data_points/flip_after) + 1
num_data_points = num_flips * flip_after
flipping_bits = torch.randint(2, size=(num_flips, num_flipping_bits), dtype=torch.float32)
if num_flipping_bits > 0:
if flip_one:
for i in range(1, num_flips):
flipping_bits[i] = flipping_bits[i-1]
bit_to_flip = torch.randint(num_flipping_bits, (1, ))
flipping_bits[i][bit_to_flip] = 1 - flipping_bits[i-1][bit_to_flip]
flipping_bits = flipping_bits.repeat_interleave(flip_after, dim=0)
random_bits = torch.randint(2, size=(num_data_points, num_inputs - num_flipping_bits), dtype=torch.float32)
X = torch.cat((flipping_bits, random_bits), dim=1)
else:
X = torch.randint(2, size=(num_data_points, num_inputs), dtype=torch.float32)
Y = torch.zeros((num_data_points, 1), dtype=torch.float)
with torch.no_grad():
mini_batch_size = 10000
for i in tqdm(range(int(num_data_points/mini_batch_size))):
Y[i*mini_batch_size:(i+1)*mini_batch_size], features =\
target_network.predict(x=X[i*mini_batch_size:(i+1)*mini_batch_size])
data = X, Y, target_network
with open(data_file, 'wb+') as f:
pickle.dump(data, f)
def main(arguments):
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-c', help="Path of the file containing the parameters of the experiment",
type=str, default='env_temp_cfg/0.json')
args = parser.parse_args(arguments)
cfg_file = args.c
with open(cfg_file, 'r') as f:
params = json.load(f)
if 'target_net_file' not in params.keys():
params['target_net_file'] = None
elif params['target_net_file'] == '':
params['target_net_file'] = None
if 'add_noise' not in params.keys():
params['add_noise'] = True
if 'flip_one' not in params.keys():
params['flip_one'] = False
generate_problem_data(
data_file=params['env_file'],
num_data_points=int(params['num_data_points']),
flip_after=int(params['flip_after']),
num_inputs=params['num_inputs'],
num_target_features=params['num_target_features'],
num_flipping_bits=params['num_flipping_bits'],
beta=params['beta'],
flip_one=params['flip_one'],
)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))